18.04.2016 Views

industry current voltage transducers

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Industry Catalogue<br />

Industry Current &<br />

Voltage Transducers


LEM Solutions<br />

LEM solutions for electrical measurements<br />

This catalogue summarizes the most common LEM product offerings for industrial, railway, high accuracy, and automotive<br />

measurements.<br />

LEM is the market leader in providing innovative and high quality solutions for measuring electrical parameters. Its core products<br />

- <strong>current</strong> and <strong>voltage</strong> <strong>transducers</strong> - are used in a broad range of applications including drives & welding, renewable energies &<br />

power supplies, traction, high precision, conventional and green vehicle businesses.<br />

With higher accuracy and speed, the feedback signal from LEM <strong>transducers</strong> enables smoother control and energy consumption<br />

reduction of many electrical systems.<br />

At the heart of … ELEVATORS<br />

In most lifts installed worldwide, LEM <strong>transducers</strong> prevent the doors closing on passengers. They keep the cabin stable when<br />

people enter, and ensure that the lift rides smoothly by adjusting the torque of the motor.<br />

At the heart of … RENEWABLE ENERGIES<br />

DRIVES & WELDING MARKET<br />

RENEWABLE ENERGIES & POWER SUPPLIES MARKETS<br />

Today, the transducer market has two main technology drivers: first, the desire for a greater degree of comfort and finer<br />

regulation, and second, the need to save energy. This means that more and more applications that used to be mechanical are<br />

changing to fully electronic control which provides increased reliability, improved regulation and higher energy efficiency.<br />

Today, about 15 % of all motors have an inverter control. This inverter can save 50 % of the total energy consumed, which is a<br />

huge potential for savings.<br />

The inverter control used in these newer systems requires reliable, accurate <strong>current</strong> measurement to enable engineers to<br />

develop a system with isolated <strong>current</strong> measurement directly on the motor phases.<br />

Energy savings is the key word today and this includes the exploitation of the wind and the sun as alternate energies. To use<br />

these renewable sources, in the most profitable way in terms of energy efficiency, the use of power electronics is a must and is<br />

essential to drive and control energy in industrial applications. Modern systems are becoming more complex and require precise<br />

coordination between the power semiconductors, the system controller, mechanics, and the feedback sensors. Transducers<br />

provide the necessary information from the load to fulfill that function. We can compare the use of <strong>transducers</strong> to adding “eyes”<br />

to the system.<br />

They can supply the “brain” of the system, in real time, with information regarding the condition of the controller.<br />

LEM products are already used among a broad spectrum of power electronics applications such as industrial motor drives,<br />

UPS, welding, robots, cranes, cable cars, ski lifts, elevators, ventilation, air-conditioning, power supplies for computer servers,<br />

and telecom.<br />

This trend towards more involved power electronics happens in a general manner in the industrial world, for example, in lighting,<br />

domestic appliances, computers and telecom applications. Power electronics increases efficiency by delivering the correct type<br />

of power at the most efficient <strong>voltage</strong>, <strong>current</strong> and frequency.<br />

LEM Solutions<br />

TRACTION & TRACKSIDE MARKET<br />

LEM <strong>transducers</strong>, specifically designed for renewable power systems, control the flow and waveform of energy sent to the grid<br />

from photovoltaic and other renewable energy systems. They measure the <strong>current</strong> to help the windmills and solar installations to<br />

work at their maximum efficiency.<br />

At the heart of … TRACTION<br />

Regardless of whether a train is powered by diesel or electricity, traction is provided by electric motors driven by inverters<br />

that are relying on LEM <strong>transducers</strong> to measure, optimize and adjust the power that is sent to the motors, improving both<br />

performance and reliability.<br />

At the heart of … HIGH PRECISION APPLICATIONS<br />

Today, high speed trains, city transit systems (metro, trams, and trolleybuses) and freight trains are the solutions against<br />

pollution and interstate traffic immobility, and provide a significant energy savings.<br />

Power electronics is essential to drive and control energy in these transportation systems.<br />

LEM has been the market leader in traction power electronics applications and development for the last 40 years and leverages<br />

this vast experience to supply solutions for isolated <strong>current</strong> and <strong>voltage</strong> measurements.<br />

LEM <strong>transducers</strong> provide control and protection to power converters and inverters that regulate energy to the electric motors<br />

(for propulsion) and to the auxiliaries (for air conditioning, heating, lighting, electrical doors, ventilation, etc.). This includes the<br />

incoming monitoring of the <strong>voltage</strong> network (changing by crossing European borders) to make the power electronics work<br />

accordingly.<br />

Although this is true for on-board applications, LEM has also provided the same control and protection signals for wayside<br />

substations.<br />

The rail <strong>industry</strong> is under constant changes and evolution. As a recent example, the privatization of the rail networks raised<br />

new requirements for which LEM provides: the onboard monitoring of power consumption (EM4T II Energy Meter), solutions to<br />

trackside applications, rail maintenance and the monitoring of points (switches) machines or signaling conditions with some new<br />

<strong>transducers</strong> families.<br />

LEM is always available to assist in adapting to these evolving technical applications.<br />

Four decades of railway experience have contributed to establishing LEM as the market leader with worldwide presence to serve<br />

you and provide the efficient, safe and reliable operation of the railways.<br />

HIGH PRECISION MARKET<br />

The quality of the image provided by MRI scanners is linked directly to the accuracy of the <strong>current</strong> measurement.<br />

The <strong>current</strong> transducer used has a direct impact on the image and if the transducer is not precise enough this will lead to a<br />

blurred and illegible image. LEM <strong>current</strong> <strong>transducers</strong> set a standard for accuracy and are the most precise industrial products<br />

in the market today. The <strong>transducers</strong> provide levels of stability and precision, at about 1–3 parts per million, which makes them<br />

references in calibration test benches or in laboratories.<br />

At the heart of … AUTOMOTIVE<br />

Certain power-electronics applications require such high performance in accuracy, drift and/or response time that is necessary<br />

to switch to other technologies to achieve these goals. The validation of customer equipment is made through recognized<br />

laboratories using high-performance test benches supported by high-technology equipment including extremely accurate<br />

<strong>current</strong> <strong>transducers</strong>. These <strong>transducers</strong> are still in need today for such traditional applications but are more and more in demand<br />

in high-performance industrial applications, specifically medical equipment (scanners, MRI, etc.), precision motor controllers,<br />

and metering or accessories for measuring and test equipment. LEM has been the leader for years in producing <strong>transducers</strong><br />

with high performance and competitive costs for these markets. The 2009 acquisition of the Danish company, Danfysik ACP<br />

A/S, as being the world’s leader in the development and manufacturing of very-high precision <strong>current</strong> <strong>transducers</strong>, reinforced<br />

this position.<br />

In electric and hybrid vehicles, LEM <strong>transducers</strong> monitor energy levels to and from the battery and are critical in the control of<br />

the electric motors.<br />

It is our business to support you with both standard and customized products to optimize your application.<br />

To achieve this challenging target of accuracy and performance, LEM’s <strong>current</strong> <strong>transducers</strong> for the high precision market use an<br />

established and proven technology, the Fluxgate technology deployed in different alternatives.<br />

Thanks to this technology, we can claim accuracies in the parts per million (PPMs) of the nominal magnitude and is<br />

representative of the performance achieved.<br />

The high-accuracy product range covers <strong>transducers</strong> for nominal <strong>current</strong> measurements from 12.5 A to 24 kA while providing<br />

overall accuracies at ambient temperatures (25°C) of only a few PPM. Thermal offset drifts are extremely low, only a few PPM<br />

per Kelvin (K).<br />

2 3


LEM Solutions<br />

LEM has been the market leader in industrial, railway, high accuracy power electronics applications and development for the last<br />

40 years and leverages this vast experience to supply solutions for isolated <strong>current</strong> and <strong>voltage</strong> measurements.<br />

With more than 2 500 <strong>current</strong> and <strong>voltage</strong> <strong>transducers</strong> in its portfolio, LEM offers a complete range of accurate, reliable, and<br />

Galvanically isolated devices for the measurement of <strong>current</strong>s from 0.25 A to 24 000 A and <strong>voltage</strong>s from 10 V to 4 200 V in<br />

various technologies: open loop, closed loop, fluxgate, insulating digital technology, Rogowski, <strong>current</strong> transformer etc.<br />

LEM <strong>transducers</strong> are designed according to the most demanding international standards (EN50178, EN 50155, EN50124-1, NFF<br />

16101, 16102, etc.) and carry CE marking. UL Recognition (UR) is also available on most models.<br />

We have worldwide ISO 9001, ISO TS 16949 and IRIS (Geneva and Beijing LEM production and design centers) qualification and<br />

offer a 5-year warranty on all of our products.<br />

At LEM, we find that our customers not only require an optimal solution to accurately measure the <strong>current</strong> in their applications,<br />

but that they are also looking for a <strong>current</strong> measurement solution which brings added value to the final application and gives an<br />

edge to their competitive environment.<br />

Performance improvement: Customers demand the best solution for all the many applications in the <strong>industry</strong> worldwide and the<br />

transducer business needs to keep up or even anticipate this. LEM remains in close collaboration with its customers and their<br />

applications to be able to react quickly to the market requirements and to maintain market leadership position in the transducer<br />

<strong>industry</strong>.<br />

LEM constantly strives to innovate and improve the performance, cost and size of its products.<br />

LEM is a world-wide company with regional sales offices across the globe close to its clients’ locations and production facilities<br />

in Switzerland, Europe (including Russia and Bulgaria) and Asia (China and Japan) for seamless service everywhere.<br />

We hope you will find this catalogue a useful guide for the selection of our products.<br />

Visit our website at www.lem.com and contact our sales network in your region for further assistance.<br />

Detailed data sheets and application notes are available upon request.<br />

Sincerely,<br />

Hans-Dieter Huber<br />

Vice President Industry<br />

François Gabella<br />

CEO LEM<br />

LEM - At the heart of power electronics.<br />

Contents<br />

Page<br />

Typical Applications in Power Electronics 6 - 7<br />

Transducer Technologies 8 - 11<br />

DRS/REU: DRIVES & WELDING, RENEWABLE<br />

ENERGIES & POWER SUPPLIES MARKETS<br />

Current <strong>transducers</strong>, 0.25 ... 5 A 12 - 13<br />

Current <strong>transducers</strong>, 5 ... 8.34 A 14 - 15<br />

Current <strong>transducers</strong>, 10 ... 20 A 16 - 17<br />

Programmable HO Series<br />

Current <strong>transducers</strong>, 2.67 ... 25 A 18 - 21<br />

Current <strong>transducers</strong>, 25 ... 40 A 22 - 23<br />

Current <strong>transducers</strong>, 50 ... 88 A 24 - 25<br />

Current <strong>transducers</strong>, 100 ... 300 A 26 - 27<br />

Current <strong>transducers</strong>, 100 ... 366 A 28 - 29<br />

Current <strong>transducers</strong>, 400 ... 800 A 30 - 31<br />

Current <strong>transducers</strong> AC, 500 ... 2000 A AC<br />

32<br />

Current <strong>transducers</strong>, 1000 ... 20000 A 32 - 33<br />

Current <strong>transducers</strong>,<br />

Minisens-FHS model, 2 ... 100 A 34 - 37<br />

Contents<br />

Page<br />

Current <strong>transducers</strong>, Specific applications<br />

Interference Frequencies Detection<br />

0.1 ... 20 A AC<br />

51<br />

Current <strong>transducers</strong>, Trackside/Substations,<br />

10 ... 20000 A 52 - 53<br />

Voltage <strong>transducers</strong>, Traction On-Board<br />

(without resistor R1), 10 ... 1500 V 54<br />

Voltage <strong>transducers</strong>, Traction On-Board<br />

(without built in resistor R1),<br />

50 ... 4200 V 54 - 55<br />

Energy Measurement, Traction On-Board<br />

EM4T II 56 - 59<br />

Selection Guide - Traction 60 - 61<br />

HIP: HIGH PRECISION MARKET<br />

Stand-alone Current <strong>transducers</strong><br />

12.5 ... 4000 A 62 -63<br />

Rack System Current <strong>transducers</strong><br />

40 ... 24000 A 64 -65<br />

AUT: AUTOMOTIVE MARKET<br />

Applications Overview 66 - 67<br />

Contents<br />

Current <strong>transducers</strong> with conditioned<br />

output, 2 ... 20000 A 38 - 39<br />

Voltage <strong>transducers</strong>, 10 ... 2500 V<br />

(without resistor R1) 40<br />

Selection Guide - Automotive 68 - 69<br />

LEM’S QUALITY AND STANDARDS 70 - 73<br />

Secondary Connections Options 74<br />

Voltage <strong>transducers</strong>, 50 ... 4200 V<br />

Design Specification Form 75<br />

(with built in resistor R1) 40 - 41<br />

Selection Parameters 76 - 77<br />

Wi-LEM<br />

Wireless Local Energy Meter 42 - 43<br />

TTR: TRACTION & TRACKSIDE MARKET<br />

Current <strong>transducers</strong>, Traction On-Board,<br />

0.4 ... 500 A 44 - 45<br />

DIMENSION DRAWINGS 78 - 96<br />

Product Coding 97<br />

Symbols and Terms 98<br />

LEM’s Warranty 99<br />

Current <strong>transducers</strong>, Traction On-Board,<br />

1000 ... 4000 A 46 - 47<br />

LEM International Sales Representatives 100<br />

LTC Series - Modular Current <strong>transducers</strong><br />

Mechanical adaptation accessories 48 - 49<br />

Current <strong>transducers</strong>,Specific applications,<br />

2 ... 10 A - Fault detection 50<br />

Shunt Isolator, Specific applications, 0.03 V 50<br />

DRS/REU: DRIVES & WELDING, RENEWABLE<br />

ENERGIES & POWER SUPPLIES MARKETS<br />

TTR: TRACTION & TRACKSIDE MARKET<br />

HIP: HIGH PRECISION MARKET<br />

AUT: AUTOMOTIVE MARKET<br />

4<br />

5


Applications<br />

Typical Applications in Power Electronics<br />

AC Variable Speed Drives and Servo Motor Drives<br />

Typical Applications in Power Electronics<br />

Uninterruptible Power Supplies (UPS)<br />

Applications<br />

Typical Applications<br />

• Machine tools, printing,<br />

paper, textile, plastic<br />

• Steel mills<br />

• Lifts<br />

• Cranes<br />

• Robotics<br />

• Pumps<br />

• Washing machines<br />

• On board Main Inverter<br />

• On board Auxiliary Inverter<br />

• EDP systems<br />

• Telecom<br />

• Security systems<br />

Typical Applications<br />

Switched Mode Power Supplies (SMPS)<br />

Typical Applications<br />

• Windmills<br />

Static Converters for DC Motor Drives<br />

Typical Applications<br />

• Power supply for<br />

electronic equipment<br />

and control systems<br />

• Battery chargers<br />

• Telecom<br />

• Voltage and <strong>current</strong><br />

stabilizer for <strong>industry</strong><br />

and lab applications<br />

• Electronic ballast<br />

Typical Applications<br />

Power Supplies for Welding Applications<br />

• Machine tools, paper,<br />

printing, plastic<br />

• Cranes<br />

• Escalators<br />

• Electrical door<br />

opening systems<br />

Battery Supplied Applications<br />

Other Applications<br />

Typical Applications<br />

• Electric vehicles<br />

(Zero Emission<br />

Vehicles, ZEV)<br />

• Fork lift trucks<br />

• Wheel chairs<br />

• Solar power supplies<br />

• Test and measurement<br />

in laboratories and<br />

universities<br />

• Medical X-ray and<br />

imaging equipment<br />

• Electrolysis, <strong>current</strong>s<br />

monitoring<br />

• Inductive heating<br />

• Energy management<br />

systems. Monitoring<br />

of load <strong>current</strong>s<br />

• Over-<strong>current</strong> protection<br />

• Control and safety systems<br />

• Electrical traction<br />

• Mining trucks; Wheel<br />

drive systems<br />

• Substations: Power<br />

transformers; AC/DC<br />

Switchgear; Rectifiers<br />

• Trackside applications<br />

(points machines, signaling...)<br />

6 7


Technologies<br />

Transducer Technologies<br />

Open Loop Current Transducers (O/L)<br />

Features<br />

Closed Loop Voltage Transducers (C/L)<br />

Features<br />

Closed Loop Fluxgate CAS-CASR-CKSR type<br />

Features<br />

Features<br />

Transducer Technologies<br />

Closed loop Fluxgate ITC type<br />

Technologies<br />

• Small package size<br />

• Extended measuring range<br />

• Reduced weight<br />

Operation principle O/L<br />

• Low power consumption<br />

• No insertion losses<br />

• Measurement of<br />

high <strong>voltage</strong>s<br />

• Safety isolation<br />

Operation principle C/L<br />

• Good overall accuracy<br />

• Low temperature drift<br />

• Excellent linearity<br />

• Any kind of AC, DC, pulsed<br />

and complex signal<br />

• High accuracy<br />

• High accuracy in<br />

temperature<br />

Operation principle<br />

• Very low drift in temperature<br />

(gain and offset)<br />

• Galvanic isolation<br />

• Fast response time<br />

• Excellent linearity<br />

• Better than Class 0.5R<br />

according to EN 50463<br />

• Outstanding longterm<br />

stability<br />

Operation principle<br />

• Low residual noise<br />

• Very low sensitivity to high<br />

external DC and AC fields<br />

• High temperature stability<br />

R1<br />

I Compensation<br />

Isolated Output Voltage V out<br />

+ U C<br />

+U C<br />

Isolated Output Current I S<br />

R<br />

kR<br />

Test winding<br />

I P<br />

VHV<br />

V<br />

P<br />

V H<br />

R SHUNT<br />

_<br />

Diff Amp<br />

+<br />

V OUT<br />

Compensation<br />

winding<br />

Fluxgate D<br />

Supplies<br />

Isolated Output<br />

Current I S<br />

V OUT<br />

- U C<br />

0V<br />

Isolated Output Voltage V OUT<br />

R1<br />

I P<br />

-U C<br />

I S<br />

R M<br />

0V<br />

Compensation<br />

Windingng<br />

Primary Conductor<br />

I P<br />

Fluxgate<br />

Interface<br />

Filter<br />

Fluxgate<br />

Magnetic Core<br />

H-Bridge<br />

Driver<br />

R<br />

kR kR SHUNT V ref IN<br />

Internal<br />

V<br />

Ref<br />

ref out<br />

I P<br />

Supplies Monitoring<br />

Over Voltage<br />

Protection<br />

OV Protection<br />

Micro-Controller<br />

Offset Correction<br />

Bridge<br />

_<br />

Resistor<br />

+<br />

Fluxgate D’<br />

Fluxgate<br />

Oscillator<br />

Synchronous<br />

Rectifier<br />

LP Filter<br />

Fault_PS<br />

Fluxgate<br />

Current<br />

PI Regulator<br />

DAC 0<br />

Power Stage<br />

Primary Current I P<br />

V H<br />

R M<br />

Primary Voltage V P<br />

Primary Current I P<br />

The magnetic flux created by the primary <strong>current</strong> I P<br />

is concentrated in<br />

a magnetic circuit and measured in the air gap using a Hall device. The<br />

output from the Hall device is then signal conditioned to provide an exact<br />

representation of the primary <strong>current</strong> at the output.<br />

A very small <strong>current</strong> limited by a series resistor is taken from the <strong>voltage</strong><br />

to be measured and is driven through the primary coil. The magnetic<br />

flux created by the primary <strong>current</strong> I P<br />

is balanced by a complementary<br />

flux produced by driving a <strong>current</strong> through the secondary windings. A<br />

hall device and associated electronic circuit are used to generate the<br />

secondary (compensating) <strong>current</strong> that is an exact representation of the<br />

primary <strong>voltage</strong>. The primary resistor (R1) can be incorporated or not in the<br />

transducer.<br />

The operating principle is that of a <strong>current</strong> transformer, equipped with a<br />

magnetic sensing element, which senses the flux density in the core. The<br />

output of the field sensing element is used as the error signal in a control<br />

loop driving a compensating <strong>current</strong> through the secondary winding of the<br />

transformer. At low frequencies, the control loop maintains the flux through<br />

the core near zero. As the frequency rises, an increasingly large fraction of<br />

the compensating <strong>current</strong> is due to the operation in transformer mode. The<br />

secondary <strong>current</strong> is therefore the image of the primary <strong>current</strong>. In a <strong>voltage</strong><br />

output transducer, the compensating <strong>current</strong> is converted to a <strong>voltage</strong><br />

through a precision resistor, and made available at the output of a buffer<br />

amplifier.<br />

I COMPENSATION<br />

Primary Current I P<br />

ITC <strong>current</strong> <strong>transducers</strong> are high accuracy <strong>transducers</strong> using fluxgate<br />

technology. This high sensitivity zero-flux detector uses a second wound<br />

core (D’) for noise reduction. A difference between primary and secondary<br />

ampere turns creates an asymmetry in the fluxgate <strong>current</strong>.<br />

This difference is detected by a microcontroller that controls the secondary<br />

<strong>current</strong> that compensates the primary ampere turns (I P<br />

x N P<br />

).<br />

This results in a very good accuracy and a very low temperature drift.<br />

The secondary compensating <strong>current</strong> is an exact representation of the<br />

primary <strong>current</strong>.<br />

I S<br />

R M<br />

Closed Loop Current Transducers (C/L)<br />

Closed Loop Fluxgate C Type<br />

Closed Loop Fluxgate CTSR type<br />

Closed Loop Fluxgate IT type<br />

Features<br />

• Wide frequency range<br />

• Good overall accuracy<br />

• Fast response time<br />

• Low temperature drift<br />

• Excellent linearity<br />

• No insertion losses<br />

Features<br />

• High accuracy<br />

• Very wide frequency range<br />

• Reduced temperature drift<br />

• Excellent linearity<br />

• Measurement of<br />

differential <strong>current</strong>s (CD)<br />

• Safety isolation (CV)<br />

• Reduced loading on<br />

the primary (CV)<br />

Features<br />

• Any kind of AC, DC, pulsed<br />

and complex signal<br />

• Non-contact measurement<br />

of differential <strong>current</strong>s<br />

• High accuracy for small<br />

residual <strong>current</strong>s<br />

• Very low drift in temperature<br />

(gain and offset)<br />

• Protection against<br />

parasitic magnetic field<br />

• Galvanic isolation<br />

Features<br />

• Very high global accuracy<br />

• Low residual noise<br />

• Excellent linearity < 1 ppm<br />

• Low cross-over distortion<br />

• High temperature stability<br />

• Wide frequency range<br />

Operation principle C/L<br />

Operation principle<br />

Operation principle<br />

Operation principle<br />

I P<br />

V H<br />

Isolated Output Current I S<br />

+U C<br />

-U C<br />

I S<br />

0V<br />

Isolated Output Voltage V out<br />

Magnetic Shells<br />

I S +U C<br />

Diff Amp<br />

-U C +U C<br />

V out<br />

I mag<br />

-U C<br />

V OUT<br />

0V<br />

Fluxgate<br />

Filter Driver<br />

Interface<br />

V ref IN<br />

I P +U I<br />

C<br />

COMP2<br />

I S<br />

+ I mag -U C<br />

Isolated Output Voltage V out<br />

L<br />

R S<br />

I COMP1<br />

I L IN<br />

N<br />

Primary conductors<br />

Primary Residual Current I PR (I L +I N )<br />

Int. ref<br />

V ref out<br />

Compensation<br />

Winding<br />

S<br />

I P<br />

D<br />

D’<br />

W<br />

AC Pickup<br />

Winding<br />

Fluxgate Saturation<br />

Detection<br />

oscillator<br />

Sweep<br />

amplifier<br />

2nd Harmonic<br />

Detector<br />

+<br />

Integrator<br />

Power<br />

+<br />

+ corrector<br />

Amplifier<br />

I S<br />

Isolated Output Current I S<br />

Compensation<br />

Current<br />

R M<br />

Primary Current I P<br />

Primary Current I P<br />

No use of Hall generators. The magnetic flux created by the primary residual IT <strong>current</strong> <strong>transducers</strong> are high accuracy, large bandwidth <strong>transducers</strong><br />

<strong>current</strong> I PR<br />

(sum between I L<br />

and I N<br />

) is compensated by a secondary<br />

using fluxgate technology with no Hall generators. The magnetic flux<br />

The magnetic flux created by the primary <strong>current</strong> I P<br />

is balanced by This technology uses two toroidal cores and two secondary windings<br />

<strong>current</strong>. The zero-flux detector is a symmetry detector using a wound<br />

core connected to a square-wave generator. The secondary compensating<br />

created by the primary <strong>current</strong> I P<br />

is compensated by a secondary <strong>current</strong>.<br />

a complementary flux produced by driving a <strong>current</strong> through the and operates on a fluxgate principle of Ampere-turns compensation.<br />

<strong>current</strong> is an exact representation of the primary <strong>current</strong>.<br />

The zero-flux detector is a symmetry detector using two wound cores<br />

secondary windings. A hall device and associated electronic circuit are For the <strong>voltage</strong> type a small (few mA) <strong>current</strong> is taken from the <strong>voltage</strong><br />

In a <strong>voltage</strong> output transducer, the compensating <strong>current</strong> is converted to a connected to a square-wave generator. The secondary compensating<br />

used to generate the secondary (compensating) <strong>current</strong> that is an exact line to be measured and is driven through the primary coil and the<br />

<strong>voltage</strong> through a precision resistor, and made available at the output of a <strong>current</strong> is an exact representation of the primary <strong>current</strong>.<br />

representation of the primary <strong>current</strong>.<br />

primary resistor.<br />

buffer amplifier.<br />

The magnetic core is actually made up of a pair of 2 magnetic shells inside<br />

which the detector is located.<br />

8 * For further information, refer to the brochure “Characteristics- Applications -Calculations” or www.lem.com<br />

9<br />

Primary Current I P


Technologies<br />

Transducer Technologies<br />

DV & DVL Type Voltage <strong>transducers</strong><br />

Features<br />

• Insulating digital technology<br />

• Measurement of all<br />

types of signals: DC, AC,<br />

pulsed and complex<br />

• Compact size,<br />

reduced volume<br />

Operation principle<br />

• High galvanic isolation<br />

• Low consumption and losses<br />

• Very high accuracy, Class<br />

0.5R according to EN<br />

50463 (DV Models)<br />

• Low temperature drift<br />

Rogowski Current <strong>transducers</strong> RT type<br />

Features<br />

• Non-contact measurement<br />

of AC & pulsed signal<br />

• Thin, lightweight & flexible<br />

measuring head<br />

• Easy to use: Can be opened<br />

Operation principle<br />

• Sensitivity to external field<br />

disturbances minimized<br />

• Wide frequency range<br />

• Galvanic isolation<br />

Transducer Technologies<br />

Split Core Current transformers AT & TT type<br />

Features<br />

• Non-contact measurement • Easy to use: Can be opened<br />

• AC & pulsed signal<br />

• Good overall accuracy<br />

• No power supply<br />

• Galvanic isolation<br />

Operation principle<br />

Technologies<br />

+HT<br />

Primary<br />

Voltage<br />

VP -HT<br />

-Up<br />

Rectifier Filter<br />

+Up -Up 0V +5V<br />

Modulator<br />

Supply<br />

Bitstream<br />

• Insulating digital technology<br />

• Measurement of all<br />

types of signals: DC, AC,<br />

pulsed and complex<br />

• Compact size,<br />

reduced volume<br />

Primary<br />

Current<br />

Shunt<br />

Rectifier<br />

Filter<br />

Power Supply<br />

Digital<br />

Filter<br />

I P<br />

+Up -Up 0V +5V<br />

+In<br />

Bitstream<br />

Digital<br />

Modulator<br />

Filter<br />

-In<br />

-Up<br />

Supply<br />

Micro controller<br />

D/A Converter<br />

U / I<br />

Generator<br />

+V C<br />

-V C<br />

Output<br />

The measuring <strong>voltage</strong>, V P<br />

, is applied directly to the transducer primary<br />

connections through a resistor network allowing the signal conditioning<br />

circuitry to feed a Sigma-Delta modulator that allows to transmit data via<br />

one single isolated channel.<br />

The signal is then transmitted to the secondary over an insulating<br />

transformer ensuring the insulation between the high <strong>voltage</strong> side (primary)<br />

and the low <strong>voltage</strong> side (secondary).<br />

The signal is reshaped on the secondary side, then decoded and filtered<br />

through a digital filter to feed a micro-controller using a Digital/Analog (D/A)<br />

converter and a <strong>voltage</strong> to <strong>current</strong> generator.<br />

The recovered output signal is completely insulated against the primary and<br />

is an exact representation of the primary <strong>voltage</strong>.<br />

DI Type Current <strong>transducers</strong> (Shunt isolator)<br />

Features<br />

Operation principle<br />

• High galvanic isolation<br />

• Low consumption and losses<br />

• Very high accuracy, Class<br />

1R according to EN 50463<br />

• Low temperature drift<br />

Power<br />

Supply<br />

Micro controller<br />

D/A Converter<br />

U / I<br />

Generator<br />

+V C<br />

-V C<br />

Output<br />

R M<br />

I P<br />

V ind<br />

I S<br />

C<br />

S<br />

W P<br />

N S<br />

N P =1<br />

R M<br />

Primary Current I P<br />

AC<br />

Isolated Output Current I S<br />

Primary Current I P<br />

AC<br />

V out Isolated Output Voltage V out<br />

A transformer is a static electrical device transferring energy by inductive<br />

Rogowski technology is an Air-core technology (without magnetic circuit).<br />

coupling between the windings making part of it. It is made with a primary<br />

A pick-up coil is magnetically coupled with the flux created by the <strong>current</strong> to<br />

coil (W P<br />

) with N P<br />

turns and a secondary coil (W S<br />

) with N S<br />

turns, wound<br />

be measured I P<br />

. A <strong>voltage</strong> V OUT<br />

is induced on the pick-up coil proportional<br />

around the same magnetic core (C).<br />

to the derivative of flux and thus proportional to the derivative of the <strong>current</strong><br />

A varying <strong>current</strong> I P<br />

in the primary winding (assimilated here to the primary<br />

to be measured I P<br />

. Because the derivative of DC is zero this technology is<br />

conductor crossing the aperture: N P<br />

= 1) creates a varying magnetic flux<br />

only useful for the measurement of AC or pulsed <strong>current</strong>s.<br />

in the transformer’s core crossing the secondary winding. This varying<br />

The waveform of the measured <strong>current</strong> requires the integration of the<br />

magnetic flux induces a varying electromotive force or <strong>voltage</strong> V ind<br />

in the<br />

induced <strong>voltage</strong> V OUT<br />

. Therefore, the <strong>current</strong> transducer may includes an<br />

secondary winding. Connecting a load to the secondary winding causes a<br />

integration function in the processing electronics (option).<br />

<strong>current</strong> I S<br />

to flow. This compensating secondary <strong>current</strong> I S<br />

is substantially<br />

proportional to the primary <strong>current</strong> I P<br />

to be measured so that N P<br />

.I P<br />

= N S<br />

.I S<br />

PRiME Current Transducers<br />

Features<br />

DC <strong>current</strong>s are not measured and not suitable because they<br />

represent a risk of magnetic saturation. The relationship here above<br />

• AC measurement with • Accuracy independent<br />

is respected only within the bandwidth of the <strong>current</strong> transformer.<br />

wide dynamic range<br />

of the position of the<br />

Warning!: Never let the output unloaded because there is a risk of safety<br />

cable in the aperture<br />

for users.<br />

• No magnetic saturation<br />

and of external fields<br />

• High overload capacity<br />

• Light weight and<br />

• Good linearity<br />

small package<br />

• Low thermal losses<br />

Operation principle<br />

V out<br />

Integrator<br />

0V<br />

Isolated Output Voltage V out<br />

DI <strong>current</strong> <strong>transducers</strong> (Shunt isolator) must be used combined with an<br />

external Shunt.<br />

DI <strong>current</strong> <strong>transducers</strong> are working as DV <strong>voltage</strong> <strong>transducers</strong> except that<br />

the input resistor network used inside the DV is replaced by an external<br />

Shunt providing then the <strong>voltage</strong> input to feed the Sigma-Delta modulator<br />

that allows to transmit data via one single isolated channel.<br />

PRiME operates on the basic Rogowski principle. Instead of a traditional<br />

wound coil, the measuring head is made of a number of sensor printed<br />

circuit boards (PCBs, each made of two separate air cored coils) mounted<br />

on a base-PCB. Each sensor PCB is connected in series to form two<br />

concentric loops. The induced <strong>voltage</strong> at their outputs is then integrated in<br />

order to obtain both amplitude and phase information for the <strong>current</strong> being<br />

measured.<br />

* For further information, refer to the brochure “Characteristics - Applications -Calculations” or www.lem.com<br />

10 11


DRS / REU<br />

I PN = 0.25 A ... 2 A DRS / REU I PN = 2 A ... 5 A DRS / REU<br />

Fluxgate<br />

I PN<br />

Closed-loop<br />

Fluxgate<br />

Open-loop<br />

Closed-loop<br />

Connection<br />

Connection<br />

I PN<br />

I P<br />

U C<br />

V out<br />

BW<br />

T A<br />

I P<br />

U C<br />

V out<br />

BW<br />

T A<br />

HO 8-NSM/<br />

2 ± 6.4 C/L + 5/0 2.5V or V ref<br />

± 0.625V DC-200 (-1dB) 0.7 -40...+85 10 LTSR 6-NP 5) 4 ± 10 O/L + 3.3/0 1.65V or V ref<br />

±0.460V DC-250 (-3dB) 1 -40...+105 SMD SMD 14<br />

SP33-1000 5)<br />

I out<br />

Primary Secondary<br />

I out<br />

Primary Secondary<br />

A A<br />

V<br />

kHz<br />

Type<br />

A A<br />

V<br />

kHz<br />

Type<br />

@ I PN<br />

% °C<br />

@ I PN<br />

% °C<br />

0.25 ± 0.36 C/L ± 15 25 mA DC-150 (-1dB) 0.5 -10...+70 1 LA 25-NP/SP14<br />

2 ± 6.67<br />

Fluxgate<br />

DC-300<br />

+ 5/0 2.5 V±0.625 V<br />

CAS<br />

(+/-3dB)<br />

0.8 -40...+85 11 CAS 6-NP<br />

0.3 ± 0.5<br />

Fluxgate<br />

Fluxgate<br />

DC-300<br />

+ 5/0 2.5V or V<br />

CTSR<br />

ref<br />

±1.2V DC-3.5 (-1dB) 1 -40...+105 2 CTSR 0.3-P 5)<br />

2 ± 6.67<br />

+ 5/0 2.5V or V<br />

CAS<br />

ref<br />

±0.625V<br />

(+/-3dB)<br />

0.8 -40...+85 12 CASR 6-NP 5)<br />

0.3 ± 0.85<br />

Fluxgate<br />

CTSR<br />

+ 5/0 2.5V or V ref<br />

±0.7428V DC-9.5 (-1dB) 0.7 -40...+105 3 CTSR 0.3-P/SP1 5)<br />

2.5 ± 3.6 C/L ± 15 25 mA DC-150 (-1dB) 0.5 0...+70 1 LA 25-NP/SP7<br />

0.3 ± 0.5<br />

Fluxgate<br />

CTSR<br />

+ 5/0 2.5V or V ref<br />

±1.2V DC-3.5 (-1dB) 1 -40...+105 4 CTSR 0.3-P/SP10 5) TW<br />

2.67 ± 6.67 O/L + 5/0 2.5V or V ref<br />

±0.8V DC-250 (-3dB) 1 -40...+105 13 HO 8-NP-0000 5)<br />

0.3 ± 0.85<br />

Fluxgate<br />

CTSR<br />

+ 5/0 2.5V or V ref<br />

±0.7428V DC-9.5 (-1dB) 0.7 -40...+105 5 CTSR 0.3-P/SP11 5) TW<br />

2.67 ± 6.67 O/L + 5/0 2.5V or V ref<br />

±0.8V DC-250 (-3dB) 1 -40...+105 SMD SMD 14 HO 8-NSM-0000 5)<br />

0.3 ± 0.5<br />

Fluxgate<br />

HO 8-NP/<br />

+ 5/0 2.5V or V<br />

CTSR<br />

ref<br />

±1.2V DC-3.5 (-1dB) 1 -40...+105 6 CTSR 0.3-TP/SP4 5)<br />

2.67 ± 6.67 O/L + 3.3/0 1.65V or V ref<br />

±0.460V DC-250 (-3dB) 1 -40...+105 13<br />

SP33-1000 5)<br />

0.3 ± 0.5<br />

Fluxgate<br />

HO 8-NSM/<br />

+ 5/0 2.5V or V<br />

CTSR<br />

ref<br />

±1.2V DC-3.5 (-1dB) 1 -40...+105 7 CTSR 0.3-TP/SP14 5) TW<br />

2.67 ± 6.67 O/L + 3.3/0 1.65V or V ref<br />

±0.460V DC-250 (-3dB) 1 -40...+105 SMD SMD 14<br />

SP33-1000 5)<br />

0.5 ± 0.72 C/L ± 15 25 mA DC-150 (-1dB) 0.5 -40...+70 1 LA 25-NP/SP13<br />

3 ± 9 O/L<br />

±<br />

12…15<br />

4 V DC-50 (-3dB) 1) 2.4 -25...+85 15 HXN 03-P<br />

0.6 ± 0.85<br />

Fluxgate<br />

2 x 2 x<br />

DC-50<br />

+ 5/0 2.5V or V<br />

CTSR<br />

ref<br />

±1.4856V DC-9.5 (-1dB) 0.7 -40...+105 2 CTSR 0.6-P 5)<br />

O/L ± 15 2 x 4 V<br />

3 ± 9<br />

(+/-3dB) 1) 3.75 -40...+85 16 HXD 03-P DM<br />

0.6 ± 0.85<br />

Fluxgate<br />

CTSR<br />

+ 5/0 2.5V or V ref<br />

±1.4856V DC-9.5 (-1dB) 0.7 -40...+105 4 CTSR 0.6-P/SP10 5) TW<br />

3 ± 9.6 C/L + 5/0 2.5 V±0.625 V DC-200 (-1dB) 0.7 -40...+85 9 LTS 6-NP<br />

0.6 ± 0.85<br />

Fluxgate<br />

CTSR<br />

+ 5/0 2.5V or V ref<br />

±1.4856V DC-9.5 (-1dB) 0.7 -40...+105 6 CTSR 0.6-TP/SP2 5)<br />

3 ± 9.6 C/L + 5/0 2.5V or V ref<br />

±0.625V DC-200 (-1dB) 0.7 -40...+85 10 LTSR 6-NP 5)<br />

0.6 ± 0.85<br />

Fluxgate<br />

Fluxgate<br />

DC-300<br />

+ 5/0 2.5V or V<br />

CTSR<br />

ref<br />

±1.4856V DC-9.5 (-1dB) 0.7 -40...+105 7 CTSR 0.6-TP/SP12 5) TW<br />

3 ± 10<br />

+ 5/0 2.5 V±0.625 V<br />

CAS<br />

(+/-3dB)<br />

0.8 -40...+85 11 CAS 6-NP<br />

1 ± 1.5 C/L ± 15 25 mA DC-150 (-1dB) 0.5 0...+70 1 LA 25-NP/SP11<br />

3 ± 10<br />

Fluxgate<br />

DC-300<br />

+ 5/0 2.5V or V<br />

CAS<br />

ref<br />

±0.625V<br />

(+/-3dB)<br />

0.8 -40...+85 12 CASR 6-NP 5)<br />

1 ± 1.7<br />

Fluxgate<br />

Fluxgate<br />

DC-300<br />

+ 5/0 2.5V or V<br />

CTSR<br />

ref<br />

±1.2V DC-9.5 (-1dB) 1 -40...+105 2 CTSR 1-P 5)<br />

3 ± 10<br />

+ 5/0 2.5V or V<br />

CAS<br />

ref<br />

±0.625V<br />

(+/-3dB)<br />

0.8 -40...+105 8 CKSR 6-NP 5)<br />

1.5 ± 2.2 C/L ± 15 24 mA DC-150 (-1dB) 0.5 0...+70 1 LA 25-NP/SP9<br />

3.75<br />

± Fluxgate<br />

DC-300<br />

+ 5/0 2.5V or V<br />

12.75 CAS<br />

ref<br />

±0.625V<br />

(+/-3dB)<br />

0.8 -40...+105 8 CKSR 15-NP 5)<br />

1.5 ± 5<br />

Fluxgate<br />

DC-300<br />

+ 5/0 2.5V or V<br />

CAS<br />

ref<br />

±0.625V<br />

(+/-3dB)<br />

0.8 -40...+105 8 CKSR 6-NP 5)<br />

4 ± 10 O/L + 5/0 2.5V or V ref<br />

±0.8V DC-250 (-3dB) 1 -40...+105 13 HO 8-NP-0000 5)<br />

2 ± 3 C/L ± 15 24 mA DC-150 (-1dB) 0.5 0...+70 1 LA 25-NP/SP8<br />

4 ± 10 O/L + 5/0 2.5V or V ref<br />

±0.8V DC-250 (-3dB) 1 -40...+105 SMD SMD 14 HO 8-NSM-0000 5)<br />

2 ± 6.4 C/L + 5/0 2.5 V ± 0.625 V DC-200 (-1dB) 0.7 -40...+85 9 LTS 6-NP<br />

4 ± 10 O/L + 3.3/0 1.65V or V ref<br />

±0.460V DC-250 (-3dB) 1 -40...+105 13<br />

HO 8-NP/<br />

SP33-1000 5)<br />

Technology<br />

X @ I PN<br />

T A<br />

= 25°C<br />

PCB<br />

Aperture,<br />

busbar, other<br />

PCB<br />

Other<br />

UR or UL<br />

Packaging No<br />

Features<br />

Technology<br />

X @ I PN<br />

T A<br />

= 25°C<br />

PCB<br />

Aperture,<br />

busbar,<br />

other<br />

PCB<br />

Other<br />

UR or UL<br />

Packaging No<br />

Features<br />

DRS / REU<br />

5 ± 7 C/L ± 15 25 mA DC-150 (-1dB) 0.5 -40...+85 17 LA 25-NP<br />

2<br />

3 4 5 6 7<br />

8 11 12<br />

14 13<br />

15<br />

16<br />

1<br />

17<br />

9<br />

10<br />

Notes:<br />

1) Small signal bandwidth to avoid excessive core heating at high frequency<br />

5) Ref IN<br />

& Ref out<br />

modes<br />

12<br />

TW = Test Winding<br />

DM = Dual Measurement<br />

Dedicated data sheets are the only recognized reference documents for the given performances and data - Data sheets: www.lem.com<br />

13


I PN = 5 A ... 7.5 A<br />

I PN<br />

I P<br />

A A<br />

Technology<br />

U C<br />

V<br />

V out<br />

I out<br />

@ I PN<br />

DRS / REU I PN = 7.5 A ... 8.34 A DRS / REU<br />

BW<br />

kHz<br />

X @ I PN<br />

T A<br />

= 25°C<br />

%<br />

T A<br />

°C<br />

Open-loop Closed-loop Fluxgate<br />

Open-loop<br />

Closed-loop<br />

Fluxgate<br />

PCB<br />

Connection<br />

Primary<br />

Aperture,<br />

busbar, other<br />

Secondary<br />

PCB<br />

Other<br />

UR or UL<br />

Packaging No<br />

Type<br />

Features<br />

I PN<br />

A<br />

I P<br />

A<br />

Technology<br />

U C<br />

V<br />

V out<br />

I out<br />

@ I PN<br />

BW<br />

kHz<br />

X @ I PN<br />

T A<br />

= 25°C<br />

%<br />

T A<br />

°C<br />

PCB<br />

Connection<br />

Primary<br />

Aperture,<br />

busbar, other<br />

Secondary<br />

PCB<br />

Other<br />

UR or UL<br />

Packaging No<br />

Type<br />

Features<br />

DRS / REU<br />

5 ± 12.5 O/L + 5/0 2.5V or V ref<br />

±0.8V DC-250 (-3dB) 1 -40...+105 13 HO 15-NP-0000 5)<br />

5 ± 12.5 O/L + 5/0 2.5V or V ref<br />

±0.8V DC-250 (-3dB) 1 -40...+105 SMD SMD 14 HO 15-NSM-0000 5)<br />

5 ± 12.5 O/L + 3.3/0 1.65V or V ref<br />

±0.460V DC-250 (-3dB) 1 -40...+105 13<br />

5 ± 12.5 O/L + 3.3/0 1.65V or V ref<br />

±0.460V DC-250 (-3dB) 1 -40...+105 SMD SMD 14<br />

HO 15-NP/<br />

SP33-1000 5)<br />

HO 15-NSM/<br />

SP33-1000 5)<br />

7.5 ± 24 C/L + 5/0 2.5 V±0.625 V DC-200 (-1dB) 0.7 -40...+85 9 LTS 15-NP<br />

7.5 ± 24 C/L + 5/0 2.5V or V ref<br />

±0.625V DC-200 (-1dB) 0.7 -40...+85 10 LTSR 15-NP 5)<br />

7.5 ± 25.5<br />

7.5 ± 25.5<br />

Fluxgate<br />

CAS<br />

Fluxgate<br />

CAS<br />

+ 5/0 2.5 V±0.625 V DC-300 (+/-3dB) 0.8 -40...+85 11 CAS 15-NP<br />

+ 5/0 2.5V or V ref<br />

±0.625V DC-300 (+/-3dB) 0.8 -40...+85 12 CASR 15-NP 5)<br />

DRS / REU<br />

5 ± 15 O/L ± 12…15 4 V DC-50 (-3dB) 1) 2.4 -25...+85 15 HXN 05-P<br />

7.5 ± 25.5<br />

Fluxgate<br />

CAS<br />

+ 5/0 2.5V or V ref<br />

±0.625V DC-300 (+/-3dB) 0.8 -40...+105 8 CKSR 15-NP 5)<br />

2 x 5<br />

2 x ±<br />

15<br />

O/L ± 15 2 x 4 V DC-50 (+/-3dB) 1) 3.75 -40...+85 16 HXD 05-P DM<br />

8 ± 12 C/L ± 15 24 mA DC-150 (-1dB) 0.5 -40...+85 17 LA 25-NP<br />

5 ± 16 C/L + 5/0 2.5 V±0.625 V DC-200 (-1dB) 0.7 -40...+85 9 LTS 15-NP<br />

5 ± 16 C/L + 5/0 2.5V or V ref<br />

±0.625V DC-200 (-1dB) 0.7 -40...+85 10 LTSR 15-NP 5)<br />

8 ± 16 C/L ± 15 32 mA DC-150 (-1dB) 0.5 -25...+70 17 LA 35-NP<br />

8 ± 18 C/L ± 12…15 24 mA DC-200 (-1dB) 0.4 -25...+85 18 LAH 25-NP<br />

5 ± 17<br />

Fluxgate<br />

CAS<br />

+ 5/0 2.5 V±0.625 V DC-300 (+/-3dB) 0.8 -40...+85 11 CAS 15-NP<br />

8 ± 20 O/L + 5/0 2.5V or V ref<br />

±0.8V DC-250 (-3dB) 1 -40...+105 13 HO 8-NP-0000 5)<br />

5 ± 17<br />

Fluxgate<br />

CAS<br />

+ 5/0 2.5V or V ref<br />

±0.625V DC-300 (+/-3dB) 0.8 -40...+85 12 CASR 15-NP 5)<br />

8 ± 20 O/L + 5/0 2.5V or V ref<br />

±0.8V DC-250 (-3dB) 1 -40...+105 SMD SMD 14 HO 8-NSM-0000 5)<br />

6 ± 9 C/L ± 15 24 mA DC-150 (-1dB) 0.5 -40...+85 17 LA 25-NP<br />

8 ± 20 O/L + 3.3/0 1.65V or V ref<br />

±0.460V DC-250 (-3dB) 1 -40...+105 13 HO 8-NP/SP33-1000 5)<br />

6 ± 19.2 C/L + 5/0 2.5 V±0.625 V DC-200 (-1dB) 0.7 -40...+85 9 LTS 6-NP<br />

8 ± 20 O/L + 3.3/0 1.65V or V ref<br />

±0.460V DC-250 (-3dB) 1 -40...+105 SMD SMD 14<br />

HO 8-NSM/<br />

SP33-1000 5)<br />

6 ± 19.2 C/L + 5/0 2.5V or V ref<br />

±0.625V DC-200 (-1dB) 0.7 -40...+85 10 LTSR 6-NP 5)<br />

8.33 ± 16.66 C/L + 5/0 12.5 mA DC-300 (-1dB) 0.7 -40...+85 19 LTSP 25-NP<br />

6 ± 20<br />

Fluxgate<br />

CAS<br />

+ 5/0 2.5 V±0.625 V DC-300 (+/-3dB) 0.8 -40...+85 11 CAS 6-NP<br />

8.33 ± 20.83 O/L + 5/0 2.5V or V ref<br />

±0.8V DC-250 (-3dB) 1 -40...+105 13 HO 25-NP-0000 5)<br />

6 ± 20<br />

Fluxgate<br />

CAS<br />

+ 5/0 2.5V or V ref<br />

±0.625V DC-300 (+/-3dB) 0.8 -40...+85 12 CASR 6-NP 5)<br />

8.33 ± 20.83 O/L + 5/0 2.5V or V ref<br />

±0.8V DC-250 (-3dB) 1 -40...+105 SMD SMD 14 HO 25-NSM-0000 5)<br />

6 ± 20<br />

Fluxgate<br />

CAS<br />

+ 5/0 2.5V or V ref<br />

±0.625V DC-300 (+/-3dB) 0.8 -40...+105 8 CKSR 6-NP 5)<br />

8.33 ± 20.83 O/L + 3.3/0 1.65V or V ref<br />

±0.460V DC-250 (-3dB) 1 -40...+105 13<br />

HO 25-NP/<br />

SP33-1000 5)<br />

6.25<br />

±<br />

21.25<br />

Fluxgate<br />

CAS<br />

+ 5/0 2.5V or V ref<br />

±0.625V DC-300 (+/-3dB) 0.8 -40...+105 8 CKSR 25-NP 5)<br />

8.33 ± 20.83 O/L + 3.3/0 1.65V or V ref<br />

±0.460V DC-250 (-3dB) 1 -40...+105 SMD SMD 14<br />

HO 25-NSM/<br />

SP33-1000 5)<br />

7 ± 14 C/L ± 15 35 mA DC-150 (-1dB) 0.5 -25...+70 17 LA 35-NP<br />

8.34 ± 26.67 C/L + 5/0 2.5 V±0.625 V DC-200 (-1dB) 0.7 -40...+85 9 LTS 25-NP<br />

7.5<br />

±<br />

18.75<br />

O/L + 5/0 2.5V or V ref<br />

±0.8V DC-250 (-3dB) 1 -40...+105 13 HO 15-NP-0000 5)<br />

8.34 ± 26.67 C/L + 5/0 2.5V or V ref<br />

±0.625V DC-200 (-1dB) 0.7 -40...+85 10 LTSR 25-NP 5)<br />

7.5<br />

7.5<br />

±<br />

18.75<br />

±<br />

18.75<br />

O/L + 5/0 2.5V or V ref<br />

±0.8V DC-250 (-3dB) 1 -40...+105 SMD SMD 14 HO 15-NSM-0000 5)<br />

O/L + 3.3/0 1.65V or V ref<br />

±0.460V DC-250 (-3dB) 1 -40...+105 13<br />

HO 15-NP/<br />

SP33-1000 5)<br />

8.34 ± 28.34<br />

8.34 ± 28.34<br />

Fluxgate<br />

CAS<br />

Fluxgate<br />

CAS<br />

+ 5/0 2.5 V±0.625 V DC-300 (+/-3dB) 0.8 -40...+85 11 CAS 25-NP<br />

+ 5/0 2.5V or V ref<br />

±0.625V DC-300 (+/-3dB) 0.8 -40...+85 12 CASR 25-NP 5)<br />

7.5<br />

±<br />

18.75<br />

O/L + 3.3/0 1.65V or V ref<br />

±0.460V DC-250 (-3dB) 1 -40...+105 SMD SMD 14<br />

HO 15-NSM/<br />

SP33-1000 5)<br />

17<br />

9<br />

10 19 15<br />

18<br />

8 11 12<br />

14 13<br />

16<br />

Notes:<br />

1) Small signal bandwidth to avoid excessive core heating at high frequency<br />

5) Ref IN<br />

& Ref out<br />

modes<br />

DM = Dual Measurement<br />

14 Dedicated data sheets are the only recognized reference documents for the given performances and data - Data sheets: www.lem.com<br />

15


DRS / REU<br />

I PN = 10 A ... 12.5 A<br />

I P<br />

Technology<br />

DRS / REU I PN = 15 A ... 20 A DRS / REU<br />

X @ I PN<br />

T A<br />

= 25°C<br />

T A<br />

Open-loop Closed-loop Fluxgate<br />

Open-loop<br />

Closed-loop<br />

Fluxgate<br />

Connection<br />

I PN<br />

U C<br />

V BW<br />

I<br />

out<br />

Primary Secondary<br />

PN<br />

U C<br />

V BW<br />

out<br />

I out<br />

Type<br />

I out<br />

Primary Secondary<br />

Type<br />

12.5 ± 42.5<br />

Fluxgate<br />

+ 5/0 2.5V or V<br />

CAS<br />

ref<br />

±0.625V DC-300 (+/-3dB) 0.8 -40...+105 8 CKSR 25-NP 5) 2 x ±<br />

2 x 20<br />

60<br />

O/L ± 15 2 x 4 V DC-50 (+/-3dB) 1) 3.75 -40...+85 16 HXD 20-P DM<br />

A A<br />

V<br />

@ I PN<br />

kHz<br />

°C<br />

A A<br />

V<br />

@ I PN<br />

kHz<br />

°C<br />

%<br />

%<br />

10 ± 25 O/L + 5/0 2.5V or V ref<br />

±0.8V DC-240 (-3dB) 1 -40...+105 20 HLSR 10-P 5)<br />

15 ± 37.5 O/L + 5/0 2.5V or V ref<br />

±0.8V DC-250 (-3dB) 1 -40...+105 13 HO 15-NP-0000 5)<br />

10 ± 25 O/L + 5/0 2.5V or V ref<br />

±0.8V DC-240 (-3dB) 1 -40...+105 SMD SMD 21 HLSR 10-SM 5)<br />

HO 15-NSM-<br />

15 ± 37.5 O/L + 5/0 2.5V or V ref<br />

±0.8V DC-250 (-3dB) 1 -40...+105 SMD SMD 14<br />

0000 5)<br />

10 ± 25 O/L + 3.3/0 1.65V or V ref<br />

±0.460V DC-240 (-3dB) 1 -40...+105 20 HLSR 10-P/SP33 5)<br />

HO 15-NP/<br />

15 ± 37.5 O/L + 3.3/0 1.65V or V ref<br />

±0.460V DC-250 (-3dB) 1 -40...+105 13<br />

SP33-1000 5)<br />

10 ± 25 O/L + 3.3/0 1.65V or V ref<br />

±0.460V DC-240 (-3dB) 1 -40...+105 SMD SMD 21<br />

HLSR 10-SM/<br />

HO 15-NSM/<br />

SP33 5)<br />

15 ± 37.5 O/L + 3.3/0 1.65V or V ref<br />

±0.460V DC-250 (-3dB) 1 -40...+105 SMD SMD 14<br />

SP33-1000 5)<br />

10 ± 30 O/L ± 12…15 4 V DC-50 (-3dB) 1) 2.4 -25...+85 15 HXN 10-P<br />

15 ± 45 O/L ± 12…15 4 V DC-50 (-3dB) 1) 2.4 -25...+85 15 HXN 15-P<br />

2 x 2 x ±<br />

O/L ± 15 2 x 4 V DC-50 (+/-3dB)<br />

10 30<br />

3.75 -40...+85 16 HXD 10-P DM<br />

2 x ±<br />

2 x 15<br />

45<br />

O/L ± 15 2 x 4 V DC-50 (+/-3dB) 1) 3.75 -40...+85 16 HXD 15-P DM<br />

11 ± 22 C/L ± 15 33 mA DC-150 (-1dB) 0.5 -25...+70 17 LA 35-NP<br />

15 ± 48 C/L + 5/0 2.5 V±0.625 V DC-200 (-1dB) 0.7 -40...+85 9 LTS 15-NP<br />

12 ± 18 C/L ± 15 24 mA DC-150 (-1dB) 0.5 -40...+85 17 LA 25-NP<br />

15 ± 48 C/L + 5/0 2.5V or V ref<br />

±0.625V DC-200 (-1dB) 0.7 -40...+85 10 LTSR 15-NP 5)<br />

12 ± 27 C/L ± 12…15 24 mA DC-200 (-1dB) 0.4 -25...+85 18 LAH 25-NP<br />

Fluxgate<br />

15 ± 51<br />

CAS<br />

+ 5/0 2.5 V±0.625 V DC-300 (+/-3dB) 0.8 -40...+85 11 CAS 15-NP<br />

12.5 ± 25 C/L + 5/0 12.5 mA DC-300 (-1dB) 0.7 -40...+85 19 LTSP 25-NP<br />

Fluxgate<br />

15 ± 51<br />

CAS<br />

+ 5/0 2.5V or V ref<br />

±0.625V DC-300 (+/-3dB) 0.8 -40...+85 12 CASR 15-NP 5)<br />

12.5 ± 31.25 O/L + 5/0 2.5V or V ref<br />

±0.8V DC-250 (-3dB) 1 -40...+105 13 HO 25-NP-0000 5)<br />

Fluxgate<br />

15 ± 51<br />

CAS<br />

+ 5/0 2.5V or V ref<br />

±0.625V DC-300 (+/-3dB) 0.8 -40...+105 8 CKSR 15-NP 5)<br />

12.5 ± 31.25 O/L + 5/0 2.5V or V ref<br />

±0.8V DC-250 (-3dB) 1 -40...+105 SMD SMD 14<br />

HO 25-NSM-<br />

Fluxgate<br />

0000 5)<br />

16.67 ± 50<br />

CAS<br />

+ 5/0 2.5 V±0.625 V DC-300 (+/-3dB) 0.8 -40...+85 11 CAS 50-NP<br />

12.5 ± 31.25 O/L + 3.3/0 1.65V or V ref<br />

±0.460V DC-250 (-3dB) 1 -40...+105 13<br />

HO 25-NP/<br />

Fluxgate<br />

SP33-1000 5)<br />

16.67 ± 50<br />

CAS<br />

+ 5/0 2.5V or V ref<br />

±0.625V DC-300 (+/-3dB) 0.8 -40...+85 12 CASR 50-NP 5)<br />

12.5 ± 31.25 O/L + 3.3/0 1.65V or V ref<br />

±0.460V DC-250 (-3dB) 1 -40...+105 SMD SMD 14<br />

HO 25-NSM/<br />

SP33-1000 5)<br />

17 ± 34 C/L ± 15 34 mA DC-150 (-1dB) 0.5 -25...+70 17 LA 35-NP<br />

12.5 ± 37.5<br />

Fluxgate<br />

CAS<br />

+ 5/0 2.5V or V ref<br />

±0.625V DC-300 (+/-3dB) 0.8 -40...+105 8 CKSR 50-NP 5)<br />

20 ± 50 O/L + 5/0 2.5V or V ref<br />

±0.8V DC-240 (-3dB) 1 -40...+105 20 HLSR 20-P 5)<br />

12.5 ± 40 C/L + 5/0 2.5 V±0.625 V DC-200 (-1dB) 0.7 -40...+85 9 LTS 25-NP<br />

20 ± 50 O/L + 5/0 2.5V or V ref<br />

±0.8V DC-240 (-3dB) 1 -40...+105 SMD SMD 21 HLSR 20-SM 5)<br />

12.5 ± 40 C/L + 5/0 2.5V or V ref<br />

±0.625V DC-200 (-1dB) 0.7 -40...+85 10 LTSR 25-NP 5)<br />

HLSR 20-P/<br />

20 ± 50 O/L + 3.3/0 1.65V or V ref<br />

±0.460V DC-240 (-3dB) 1 -40...+105 20<br />

SP33 5)<br />

12.5 ± 42.5<br />

Fluxgate<br />

+ 5/0 2.5 V±0.625 V DC-300 (+/-3dB) 0.8 -40...+85 11 CAS 25-NP<br />

HLSR 20-SM/<br />

CAS<br />

20 ± 50 O/L + 3.3/0 1.65V or V ref<br />

±0.460V DC-240 (-3dB) 1 -40...+105 SMD SMD 21<br />

SP33 5)<br />

12.5 ± 42.5<br />

Fluxgate<br />

+ 5/0 2.5V or V<br />

CAS<br />

ref<br />

±0.625V DC-300 (+/-3dB) 0.8 -40...+85 12 CASR 25-NP 5)<br />

20 ± 60 O/L ± 12…15 4 V DC-50 (-3dB) 1) 2.4 -25...+85 15 HXN 20-P<br />

PCB<br />

Aperture,<br />

busbar, other<br />

PCB<br />

Other<br />

UR or UL<br />

Packaging No<br />

Features<br />

I P<br />

Technology<br />

X @ I PN<br />

T A<br />

= 25°C<br />

T A<br />

PCB<br />

Connection<br />

Aperture,<br />

busbar, other<br />

PCB<br />

Other<br />

UR or UL<br />

Packaging No<br />

Features<br />

DRS / REU<br />

21<br />

20<br />

10 19 8<br />

11 12<br />

14 13<br />

9<br />

15<br />

16<br />

17<br />

18<br />

Notes:<br />

1) Small signal bandwidth to avoid excessive core heating at high frequency<br />

5) Ref IN<br />

& Ref out<br />

modes<br />

DM = Dual Measurement<br />

16 Dedicated data sheets are the only recognized reference documents for the given performances and data - Data sheets: www.lem.com<br />

17


DRS / REU<br />

I PN = 2.67 A ... 25 A<br />

I PN<br />

A<br />

2.67 ; 5<br />

; 8.33<br />

4 ; 7.5<br />

; 12.5<br />

I P<br />

A<br />

± 6.67 ; ±<br />

12.5 ; ± 20.83<br />

± 10 ; ± 18.75<br />

; ± 31.25<br />

Technology<br />

U C<br />

V<br />

O/L + 5/0<br />

O/L + 5/0<br />

V out<br />

I out<br />

@ I PN<br />

2.5 ; 1.65 ; 1.5 ;<br />

0.5 V or V ref<br />

±0.8V<br />

2.5 ; 1.65 ; 1.5 ;<br />

0.5 V or V ref<br />

±0.8V<br />

BW<br />

kHz<br />

DC-100 ; 250<br />

; 600 (-3dB)<br />

DC-100 ; 250<br />

; 600 (-3dB)<br />

X @ I PN<br />

T A<br />

= 25°C<br />

%<br />

T A<br />

°C<br />

PCB<br />

Connection<br />

Primary<br />

Aperture,<br />

busbar, other<br />

DRS / REU<br />

Secondary<br />

PCB<br />

Other<br />

UR or UL<br />

Packaging No<br />

1 -40...+105 13<br />

1 -40...+105 13<br />

Type<br />

Open-loop<br />

HO 25-NPPR 5)<br />

Orange for default setting<br />

HO 25-NPPR 5)<br />

Orange for default setting<br />

Features<br />

P<br />

P<br />

HO SERIES<br />

Current Transducers with Advanced ASIC Technology Integrating Intelligent and<br />

Interactive Functions<br />

Any logistics manager will appreciate the value of a single stock item that covers two or more part numbers: in the case of a<br />

<strong>current</strong> transducer, having one type that can cover several <strong>current</strong> ranges, offer various response times, and provide several<br />

choices for the internal reference <strong>voltage</strong>, all configurable by the engineering team. Achieving that flexibility has been the key<br />

motivation for LEM engineers while optimizing the cost and reducing the size, together with improving performance.<br />

Special effort has been focused on a new Application Specific Integrated Circuit (ASIC) to help achieve these goals, resulting<br />

in a new generation of ASIC specific <strong>current</strong> <strong>transducers</strong> based on the Open Loop Hall effect technology leading to the<br />

development of the HO series.<br />

DRS / REU<br />

8 ; 15 ; 25<br />

± 20 ; ± 37.5<br />

; ± 62.5<br />

O/L + 5/0<br />

2.5 ; 1.65 ; 1.5 ;<br />

0.5 V or V ref<br />

±0.8V<br />

DC-100 ; 250<br />

; 600 (-3dB)<br />

1 -40...+105 13<br />

HO 25-NPPR 5)<br />

Orange for default setting<br />

P<br />

2.67 ; 5<br />

; 8.33<br />

4 ; 7.5<br />

; 12.5<br />

± 6.67 ; ±<br />

12.5 ; ± 20.83<br />

± 10 ; ± 18.75<br />

; ± 31.25<br />

O/L + 5/0<br />

O/L + 5/0<br />

2.5 ; 1.65 ; 1.5 ;<br />

0.5 V or V ref<br />

±0.8V<br />

2.5 ; 1.65 ; 1.5 ;<br />

0.5 V or V ref<br />

±0.8V<br />

DC-100 ; 250<br />

; 600 (-3dB)<br />

DC-100 ; 250<br />

; 600 (-3dB)<br />

1 -40...+105 SMD SMD 14<br />

1 -40...+105 SMD SMD 14<br />

HO 25-NSMPR 5)<br />

Orange for default setting<br />

HO 25-NSMPR 5)<br />

Orange for default setting<br />

P<br />

P<br />

New ASIC die, a complete Open Loop Hall<br />

effect <strong>current</strong> transducer on a single chip.<br />

8 ; 15 ; 25<br />

± 20 ; ± 37.5<br />

; ± 62.5<br />

O/L + 5/0<br />

2.5 ; 1.65 ; 1.5 ;<br />

0.5 V or V ref<br />

±0.8V<br />

DC-100 ; 250<br />

; 600 (-3dB)<br />

1 -40...+105 SMD SMD 14<br />

HO 25-NSMPR 5)<br />

Orange for default setting<br />

P<br />

2.67 ; 5<br />

; 8.33<br />

± 6.67 ; ±<br />

12.5 ; ± 20.83<br />

O/L + 3.3/0<br />

2.5 ; 1.65 ; 1.5 ; 0.5<br />

V or V ref<br />

±0.460V<br />

DC-100 ; 250<br />

; 600 (-3dB)<br />

1 -40...+105 13<br />

HO 25-NPPR/SP33 5)<br />

Orange for default setting<br />

P<br />

4 ; 7.5<br />

; 12.5<br />

± 10 ; ± 18.75<br />

; ± 31.25<br />

O/L + 3.3/0<br />

2.5 ; 1.65 ; 1.5 ; 0.5<br />

V or V ref<br />

±0.460V<br />

DC-100 ; 250<br />

; 600 (-3dB)<br />

1 -40...+105 13<br />

HO 25-NPPR/SP33 5)<br />

Orange for default setting<br />

P<br />

8 ; 15 ; 25<br />

± 20 ; ± 37.5<br />

; ± 62.5<br />

O/L + 3.3/0<br />

2.5 ; 1.65 ; 1.5 ; 0.5<br />

V or V ref<br />

±0.460V<br />

DC-100 ; 250<br />

; 600 (-3dB)<br />

1 -40...+105 13<br />

HO 25-NPPR/SP33 5)<br />

Orange for default setting<br />

P<br />

With this ASIC at its heart, the HO models are designed for <strong>current</strong> measurements from 2.67 A RMS<br />

to 25 A RMS<br />

nominal, with nine<br />

possible <strong>current</strong> ranges selectable either by digital programmability or by multi-range PCB configuration.<br />

Possible nominal ranges of HO 25-NPPR/-NSMPR with the various primary bus bar configurations<br />

2.67 ; 5<br />

; 8.33<br />

± 6.67 ; ±<br />

12.5 ; ± 20.83<br />

O/L + 3.3/0<br />

2.5 ; 1.65 ; 1.5 ; 0.5<br />

V or V ref<br />

±0.460V<br />

DC-100 ; 250<br />

; 600 (-3dB)<br />

1 -40...+105 SMD SMD 14<br />

HO 25-NSMPR/SP33 5)<br />

Orange for default setting<br />

P<br />

4 ; 7.5<br />

; 12.5<br />

± 10 ; ± 18.75<br />

; ± 31.25<br />

O/L + 3.3/0<br />

2.5 ; 1.65 ; 1.5 ; 0.5<br />

V or V ref<br />

±0.460V<br />

DC-100 ; 250<br />

; 600 (-3dB)<br />

1 -40...+105 SMD SMD 14<br />

HO 25-NSMPR/SP33 5)<br />

Orange for default setting<br />

P<br />

Number of primary turns<br />

Range 1<br />

I PN<br />

= 8 A<br />

Primary <strong>current</strong><br />

Range 2<br />

I PN<br />

= 15 A<br />

Range 3<br />

I PN<br />

= 25 A<br />

8 ; 15 ; 25<br />

± 20 ; ± 37.5<br />

; ± 62.5<br />

O/L + 3.3/0<br />

2.5 ; 1.65 ; 1.5 ; 0.5<br />

V or V ref<br />

±0.460V<br />

DC-100 ; 250<br />

; 600 (-3dB)<br />

1 -40...+105 SMD SMD 14<br />

HO 25-NSMPR/SP33 5)<br />

Orange for default setting<br />

P<br />

1 8 A 15 A 25 A<br />

2 4 A 7.5 A 12.5 A<br />

14 13<br />

3 2.67 A 5 A 8.33 A<br />

Recommended<br />

PCB Connection<br />

Notes:<br />

5) Ref IN<br />

& Ref out<br />

modes<br />

P = Programmable by the user at any time for the <strong>current</strong> range (between 3 ranges) ; The internal reference (between 4 references) ; The response<br />

time (between 3 response times) ; Lower comsumption mode ; Over<strong>current</strong> detection level ; Device faulty indication mode ; Standby mode.<br />

Dedicated data sheets are the only recognized reference documents for the given performances and data - Data sheets: www.lem.com<br />

18 19


HO SERIES<br />

HO’s main benefits include the following<br />

HO SERIES<br />

HO name and codification<br />

DRS / REU<br />

• Three programmable <strong>current</strong> ranges: 8 A RMS<br />

, 15 A RMS<br />

, 25 A RMS<br />

(25 A RMS<br />

set by default)<br />

• A broad range of programmable functions including Low power mode, Standby mode, and EEPROM control (fault reporting)<br />

• Single + 3.3 V or + 5 V power supply (in two different HO versions)<br />

• Offset and gain drifts two times better than the previous generation<br />

• Programmable over-<strong>current</strong> detection (OCD) function provided on a dedicated pin, to be set by the user over 16<br />

programmable levels up to 5.8 x I PN<br />

(the nominal primary <strong>current</strong>). The OCD output turns on within 2 μs when programmed<br />

over-<strong>current</strong> occurs, switching from a high (5 V) to a low level (0 V). The over-<strong>current</strong> threshold is detected with 10 %<br />

accuracy; the user can set a minimum duration of the OCD output pulse of 1 ms if required, to ensure that a short overload<br />

can still be detected by an external micro-controller<br />

• Programmable slow or quick response time (2 to 6 μs) by choosing specific output filters<br />

• Four programmable internal reference <strong>voltage</strong>s: 2.5, 1.65, 1.5 or 0.5 V (with + 5 V power supply), available on a dedicated pin<br />

• Possible use of an external <strong>voltage</strong> reference from 0.5 to 2.65 V (with + 5 V power supply)<br />

DRS / REU<br />

• Measuring range up to 2.5 x I PN<br />

• -40 to +105 °C operating temperature range.<br />

Only V ref IN<br />

Code: 4<br />

• High accuracy at +25 °C: 1% of I PN<br />

and at +85 °C: 2.9% of I PN<br />

• Creepage & clearance distances: 8 mm + Comparative Tracking Index 600 V<br />

• Small device outline: 12 (W) x 23 (L) x 12 (H)mm<br />

• Through-hole and SMT packages<br />

Key parameters of HO 25-NPPR/-NSMPR models<br />

Programmable<br />

Rating I PN<br />

(A RMS<br />

)<br />

8 or 15 or 25<br />

Accuracy @ +25 °C<br />

(% of I PN<br />

)<br />

Measuring range I PM<br />

(A) +/- 2.5 x I PN<br />

Accuracy @ +105 °C<br />

(% of I PN<br />

)<br />

Linearity (% of I PN<br />

) 0.5<br />

Supply Voltage (VDC) + 3.3 or + 5 +/-10 %<br />

Programmable internal<br />

Reference V Ref OUT<br />

(V)<br />

Frequency Bandwidth<br />

(kHz) (3 dB)<br />

1<br />

3.8<br />

0.5 / 1.5 / 1.65 / 2.5<br />

DC..100 to 600<br />

Analog Voltage Output<br />

(V) @ I PN<br />

0.8 Offset drift (mV/K) +/-0.095<br />

Programmable Response<br />

time @ 90 % of I PN<br />

tr (us)<br />

2 - 3.5 - 6 Gain drift (ppm/K) +/- 220<br />

Users program the HO transducer through a connection to a host microcontroller: when the V Ref<br />

pin is forced to the supply<br />

<strong>voltage</strong>, the output pin becomes the I/O port of a single wire bus interface. Over this interface, serial data comprising a 12-bit<br />

word conveys the user’s configuration choices, such as, amongst others: range selection, the internal refe rence <strong>voltage</strong>, and<br />

the over-<strong>current</strong> detection threshold. Data is sent over this interface to the transducer at 10 kbits/s, and programming takes only<br />

a few hundred milliseconds. This programming procedure may be carried out at any time, so the operating parameters of the HO<br />

transducer may be re-assigned, even during operation of the device in its application.<br />

For users who require <strong>transducers</strong> already programmed to a single set of operating parameters, LEM can also offer models with<br />

performance and function already set at the factory.<br />

20 21


I PN = 25 A ... 40 A<br />

I PN<br />

I P<br />

A A<br />

Technology<br />

U C<br />

V<br />

V out<br />

I out<br />

@ I PN<br />

DRS / REU I PN = 25 A ... 40 A DRS / REU<br />

BW<br />

kHz<br />

X @ I PN<br />

T A<br />

= 25°C<br />

%<br />

T A<br />

°C<br />

Open-loop Closed-loop Fluxgate<br />

Open-loop<br />

Closed-loop<br />

Fluxgate<br />

PCB<br />

Connection<br />

Primary<br />

Aperture,<br />

busbar, other<br />

Secondary<br />

PCB<br />

Other<br />

UR or UL<br />

Packaging No<br />

Type<br />

Features<br />

I PN<br />

A<br />

I P<br />

A<br />

Technology<br />

U C<br />

V<br />

V out<br />

I out<br />

@ I PN<br />

BW<br />

kHz<br />

X @ I PN<br />

T A<br />

= 25°C<br />

%<br />

T A<br />

°C<br />

PCB<br />

Connection<br />

Primary<br />

Aperture,<br />

busbar, other<br />

Secondary<br />

PCB<br />

Other<br />

UR or UL<br />

Packaging No<br />

Type<br />

Features<br />

DRS / REU<br />

25 ± 36 C/L ± 15 25 mA DC-150 (-1dB) 0.5 -40...+85 17 LA 25-NP<br />

25 ± 36 C/L ± 15 25 mA DC-150 (-1dB) 0.5 -40...+85 22 LA 25-NP/SP25 LP<br />

25 ± 50 C/L + 5/0 12.5 mA DC-300 (-1dB) 0.7 -40...+85 19 LTSP 25-NP<br />

25 ± 55 C/L ± 12…15 25 mA DC-200 (-1dB) 0.4 -25...+85 18 LAH 25-NP<br />

25 ± 62.5 O/L + 5/0 2.5V or V ref<br />

±0.8V DC-250 (-3dB) 1 -40...+105 13 HO 25-NP-0000 5)<br />

25 ± 85<br />

25 ± 85<br />

25 ± 75<br />

25 ± 75<br />

25 ± 75<br />

Fluxgate<br />

CAS<br />

Fluxgate<br />

CAS<br />

Fluxgate<br />

CAS<br />

Fluxgate<br />

CAS<br />

Fluxgate<br />

CAS<br />

+ 5/0 2.5V or V ref<br />

±0.625V DC-300 (+/-3dB) 0.8 -40...+85 12 CASR 25-NP 5)<br />

+ 5/0 2.5V or V ref<br />

±0.625V DC-300 (+/-3dB) 0.8 -40...+105 8 CKSR 25-NP 5)<br />

+ 5/0 2.5 V±0.625 V DC-300 (+/-3dB) 0.8 -40...+85 11 CAS 50-NP<br />

+ 5/0 2.5V or V ref<br />

±0.625V DC-300 (+/-3dB) 0.8 -40...+85 12 CASR 50-NP 5)<br />

+ 5/0 2.5V or V ref<br />

±0.625V DC-300 (+/-3dB) 0.8 -40...+105 8 CKSR 50-NP 5)<br />

DRS / REU<br />

25 ± 62.5 O/L + 5/0 2.5V or V ref<br />

±0.8V DC-250 (-3dB) 1 -40...+105 SMD SMD 14<br />

25 ± 62.5 O/L + 3.3/0 1.65V or V ref<br />

±0.460V DC-250 (-3dB) 1 -40...+105 13<br />

HO 25-NSM-<br />

0000 5)<br />

HO 25-NP/<br />

SP33-1000 5)<br />

32 ± 80 O/L + 5/0 2.5V or V ref<br />

±0.8V DC-240 (-3dB) 1 -40...+105 20 HLSR 32-P 5)<br />

32 ± 80 O/L + 5/0 2.5V or V ref<br />

±0.8V DC-240 (-3dB) 1 -40...+105 SMD SMD 21 HLSR 32-SM 5)<br />

25 ± 62.5 O/L + 3.3/0 1.65V or V ref<br />

±0.460V DC-250 (-3dB) 1 -40...+105 SMD SMD 14<br />

HO 25-NSM/<br />

SP33-1000 5)<br />

25 ± 75 O/L ± 12…15 4 V DC-50 (-3dB) 1) 2.4 -25...+85 15 HXN 25-P<br />

32 ± 80 O/L + 3.3/0 1.65V or V ref<br />

±0.460V DC-240 (-3dB) 1 -40...+105 20 HLSR 32-P/SP33 5)<br />

32 ± 80 O/L + 3.3/0 1.65V or V ref<br />

±0.460V DC-240 (-3dB) 1 -40...+105 SMD SMD 21<br />

HLSR 32-SM/<br />

SP33 5)<br />

2 x<br />

25<br />

3 x<br />

25<br />

2 x ± 75 O/L ± 15 2 x 4 V DC-50 (+/-3dB) 1) 3.75 -40...+85 16 HXD 25-P DM<br />

3 x ± 75 O/L ± 12…15 3 x 4 V DC-10 (-3dB) 1) 4.85 -10...+75 23 HTT 25-P TM<br />

35 ± 70 C/L ± 15 35 mA DC-150 (-1dB) 0.5 -25...+70 17 LA 35-NP<br />

40 ± 100 O/L + 5/0 2.5V or V ref<br />

±0.8V DC-240 (-3dB) 1 -40...+105 20 HLSR 40-P 5)<br />

25 ± 80 C/L + 5/0 2.5 V±0.625 V DC-200 (-1dB) 0.7 -40...+85 9 LTS 25-NP<br />

25 ± 80 C/L + 5/0 2.5V or V ref<br />

±0.625V DC-200 (-1dB) 0.7 -40...+85 10 LTSR 25-NP 5)<br />

40 ± 100 O/L + 5/0 2.5V or V ref<br />

±0.8V DC-240 (-3dB) 1 -40...+105 SMD SMD 21 HLSR 40-SM 5)<br />

40 ± 100 O/L + 3.3/0 1.65V or V ref<br />

±0.460V DC-240 (-3dB) 1 -40...+105 20 HLSR 40-P/SP33 5)<br />

25 ± 85<br />

Fluxgate<br />

CAS<br />

+ 5/0 2.5 V±0.625 V DC-300 (+/-3dB) 0.8 -40...+85 11 CAS 25-NP<br />

40 ± 100 O/L + 3.3/0 1.65V or V ref<br />

±0.460V DC-240 (-3dB) 1 -40...+105 SMD SMD 21<br />

HLSR 40-SM/<br />

SP33 5)<br />

14 13<br />

8<br />

11 12<br />

21 20<br />

10 19 9<br />

15<br />

17 22<br />

18<br />

16<br />

23<br />

Notes:<br />

1) Small signal bandwidth to avoid excessive core heating at high frequency<br />

5) Ref IN<br />

& Ref out<br />

modes<br />

LP = Longer Pins<br />

DM = Dual Measurement<br />

TM = Triplet Measurement<br />

22 Dedicated data sheets are the only recognized reference documents for the given performances and data - Data sheets: www.lem.com<br />

23


I PN = 50 A ... 88 A<br />

I PN<br />

I P<br />

A A<br />

Technology<br />

U C<br />

V<br />

V out<br />

I out<br />

@ I PN<br />

DRS / REU I PN = 50 A ... 88 A DRS / REU<br />

BW<br />

kHz<br />

X @ I PN<br />

T A<br />

= 25°C<br />

%<br />

T A<br />

°C<br />

Open-loop Closed-loop Fluxgate<br />

Open-loop<br />

Closed-loop<br />

Fluxgate<br />

PCB<br />

Connection<br />

Primary<br />

Aperture,<br />

busbar, other<br />

Secondary<br />

PCB<br />

Other<br />

UR or UL<br />

Packaging No<br />

Type<br />

Features<br />

I PN<br />

A<br />

I P<br />

A<br />

Technology<br />

U C<br />

V<br />

V out<br />

I out<br />

@ I PN<br />

BW<br />

kHz<br />

X @ I PN<br />

T A<br />

= 25°C<br />

%<br />

T A<br />

°C<br />

PCB<br />

Connection<br />

Primary<br />

Aperture,<br />

busbar, other<br />

Secondary<br />

PCB<br />

Other<br />

UR or UL<br />

Packaging No<br />

Type<br />

Features<br />

DRS / REU<br />

50 ± 70 C/L ± 12…15 50 mA DC-200 (-1dB) 0.65 6) -40...+85 24 LA 55-P<br />

50 ± 70 C/L ± 12…15 50 mA DC-200 (-1dB) 0.45 6) -40...+85 24 LA 55-P/SP23<br />

50 ± 70 C/L ± 12…15 50 mA DC-200 (-1dB) 0.65 6) -40...+85 25 LA 55-TP<br />

50 ± 100 C/L ± 12…15 25 mA DC-200 (-1dB) 0.65 6) -40...+85 24 LA 55-P/SP1<br />

50 ± 150<br />

50 ± 150<br />

Fluxgate<br />

CAS<br />

Fluxgate<br />

CAS<br />

+ 5/0<br />

+ 5/0<br />

2.5V or V ref<br />

±0.625V<br />

2.5V or V ref<br />

±0.625V<br />

DC-300 (+/-3dB) 0.8 -40...+85 12 CASR 50-NP 5)<br />

DC-300 (+/-3dB) 0.8 -40...+105 8 CKSR 50-NP 5)<br />

50 ± 150 O/L ± 12…15 4 V DC-50 (-3dB) 1) 2.4 -25...+85 15 HXN 50-P<br />

50 ± 150 O/L ± 15 4 V DC-50 (-3dB) 1) 2 -25...+85 28 HAL 50-S<br />

DRS / REU<br />

50 ± 100 C/L ± 12…15 25 mA DC-200 (-1dB) 0.65 6) -40...+85 25 LA 55-TP/SP1<br />

50 ± 150 O/L ± 15 4 V DC-50 (-3dB) 1) 2.5 -10...+80 29 HAS 50-S<br />

50 ± 100 C/L ± 12…15 25 mA DC-200 (-1dB) 0.65 6) -40...+85 25 LA 55-TP/SP27<br />

50 ± 150 O/L ± 15 4 V DC-50 (-3dB) 1) 2.5 -10...+80 30 HAS 50-P<br />

50 ± 100 O/L ± 12…15 4 V DC-10 (-1dB) 1) 3.4 -10...+70 26 HTR 50-SB SC<br />

50 ± 150 O/L ± 12…15 4 V DC-50 (-3dB) 1) 2.75 -40...+80 31 HTB 50-P<br />

50 ± 110 C/L ± 12…15 25 mA DC-200 (-1dB) 0.3 -25...+85 27 LAH 50-P<br />

50 ± 150 O/L ± 12…15 4 V DC-50 (-3dB) 1) 2.75 -40...+80 32 HTB 50-TP<br />

50 ± 125 O/L + 5/0<br />

2.5V or V ref<br />

±0.8V<br />

DC-240 (-3dB) 1 -40...+105 20 HLSR 50-P 5)<br />

50 ± 150 O/L + 12…15<br />

U C<br />

/2 V +/-<br />

1.667 V<br />

DC-50 (-3dB) 1) 1.5 -25...+85 33 HTB 50-P/SP5<br />

50 ± 125 O/L + 5/0<br />

50 ± 125 O/L + 3.3/0<br />

50 ± 125 O/L + 3.3/0<br />

50 ± 150<br />

Fluxgate<br />

CAS<br />

2.5V or V ref<br />

±0.8V<br />

1.65V or V ref<br />

±0.460V<br />

1.65V or V ref<br />

±0.460V<br />

+ 5/0 2.5 V±0.625 V<br />

DC-240 (-3dB) 1 -40...+105 SMD SMD 21 HLSR 50-SM 5)<br />

DC-240 (-3dB) 1 -40...+105 20<br />

DC-240 (-3dB) 1 -40...+105 SMD SMD 21<br />

DC-300<br />

(+/-3dB)<br />

HLSR 50-P/<br />

SP33 5)<br />

HLSR 50-SM/<br />

SP33 5)<br />

0.8 -40...+85 11 CAS 50-NP<br />

50 ± 150 O/L + 12…15<br />

50 ± 150 O/L + 5/0<br />

3 x 50<br />

3 x 75<br />

3 x ±<br />

150<br />

3 x ±<br />

225<br />

U C<br />

/2 V +/-<br />

1.667 V<br />

2.5V or V ref<br />

±0.625V<br />

DC-50 (-3dB) 1) 1.5 -25...+85 34 HTB 50-TP/SP5<br />

DC-50 (-3dB) 1) 1.4 -40...+85 35 HASS 50-S 5)<br />

O/L ± 12…15 3 x 4 V DC-10 (-3dB) 1) 3.75 -10...+75 23 HTT 50-P TM<br />

O/L ± 12…15 3 x 4 V DC-10 (-3dB) 1) 3.75 -10...+75 23 HTT 75-P TM<br />

3 x 88<br />

3 x ±<br />

240<br />

C/L ± 15 3 x 22 mA DC-200 (-1dB) 1 -40...+85 36 LTT 88-S TM<br />

8<br />

11 12<br />

23<br />

27<br />

21 20 25<br />

35<br />

15<br />

26<br />

29<br />

30<br />

24<br />

31<br />

33<br />

32<br />

34<br />

28<br />

36<br />

Notes:<br />

1) Small signal bandwidth to avoid excessive core heating at high frequency<br />

5) Ref IN<br />

& Ref out<br />

modes<br />

6) Accuracy calculated with max electrical offset instead of typical electrical offset @ U C<br />

= ± 15 V<br />

SC = Split Core<br />

TM = Triplet Measurement<br />

24 Dedicated data sheets are the only recognized reference documents for the given performances and data - Data sheets: www.lem.com<br />

25


I PN = 100 A ... 200 A<br />

I PN = 200 A ... 300 A<br />

DRS / REU<br />

Open-loop<br />

DRS / REU<br />

Open-loop<br />

I PN<br />

A<br />

I P<br />

A<br />

Technology<br />

U C<br />

V<br />

V out<br />

I out<br />

@ I PN<br />

BW<br />

kHz<br />

X @ I PN<br />

T A<br />

= 25°C<br />

%<br />

T A<br />

°C<br />

PCB<br />

Connection<br />

Primary<br />

Aperture,<br />

busbar,<br />

other<br />

Secondary<br />

PCB<br />

Other<br />

UR or UL<br />

Packaging No<br />

Type<br />

Features<br />

I PN<br />

A<br />

I P<br />

A<br />

Technology<br />

U C<br />

V<br />

V out<br />

I out<br />

@ I PN<br />

BW<br />

kHz<br />

X @ I PN<br />

T A<br />

= 25°C<br />

%<br />

T A<br />

°C<br />

PCB<br />

Connection<br />

Primary<br />

Aperture,<br />

busbar,<br />

other<br />

Secondary<br />

PCB<br />

Other<br />

UR or UL<br />

Packaging No<br />

Type<br />

Features<br />

100 ± 200 O/L ± 12…15 4 V DC-10 (-1dB) 1) 3.4 -10...+70 26 HTR 100-SB SC<br />

200 ± 500 O/L + 12…15<br />

U C<br />

/2 V +/-<br />

1.667 V<br />

DC-50 (-3dB) 1) 1.5 -25...+85 33 HTB 200-P/SP5<br />

DRS / REU<br />

100 ± 300 O/L ± 15 4 V DC-50 (-3dB) 1) 2.7 -10...+80 37 HAC 100-S<br />

100 ± 300 O/L ± 15 4 V DC-50 (-3dB) 1) 1.75 -25...+85 28 HAL 100-S<br />

100 ± 300 O/L ± 15 4 V DC-50 (-3dB) 1) 1.75 -25...+85 38 HTA 100-S<br />

100 ± 300 O/L ± 15 4 V DC-50 (-3dB) 1) 2.5 -10...+80 29 HAS 100-S<br />

100 ± 300 O/L ± 15 4 V DC-50 (-3dB) 1) 2.5 -10...+80 30 HAS 100-P<br />

200 ± 600 O/L ± 15 4 V DC-50 (-3dB) 1) 2.7 -10...+80 37 HAC 200-S<br />

200 ± 600 O/L ± 15 4 V DC-50 (-3dB) 1) 1.75 -25...+85 28 HAL 200-S<br />

200 ± 600 O/L ± 15 4 V DC-50 (-3dB) 1) 1.75 -25...+85 38 HTA 200-S<br />

200 ± 600 O/L ± 15 4 V DC-50 (-3dB) 1) 2.5 -10...+80 29 HAS 200-S<br />

DRS / REU<br />

100 ± 300 O/L ± 12…15 4 V DC-50 (-3dB) 1) 2.75 -40...+80 31 HTB 100-P<br />

200 ± 600 O/L ± 15 4 V DC-50 (-3dB) 1) 2.5 -10...+80 30 HAS 200-P<br />

100 ± 300 O/L ± 12…15 4 V DC-50 (-3dB) 1) 2.75 -40...+80 32 HTB 100-TP<br />

200 ± 600 O/L ± 15 4 V DC-25 (-3dB) 1) 1.75 -40...+105 42 HAT 200-S<br />

100 ± 300 O/L + 12…15<br />

U C<br />

/2 V +/-<br />

1.667 V<br />

DC-50 (-3dB) 1) 1.5 -25...+85 33 HTB 100-P/SP5<br />

200 ± 600 O/L + 5/0<br />

2.5V or V ref<br />

±0.625V<br />

DC-50 (-3dB) 1) 1.4 -40...+85 35 HASS 200-S 5)<br />

100 ± 300 O/L + 12…15<br />

U C<br />

/2 V +/-<br />

1.667 V<br />

DC-50 (-3dB) 1) 1.5 -25...+85 34 HTB 100-TP/SP5<br />

300 ± 450 O/L ± 12…15 4 V DC-8 (-1dB) 1) 3.75 -10...+70 39 HOP 300-SB SC<br />

100 ± 300 O/L + 5/0<br />

2.5V or V ref<br />

±0.625V<br />

DC-50 (-3dB) 1) 1.4 -40...+85 35 HASS 100-S 5)<br />

300 ± 600 O/L ± 12…15 4 V DC-10 (-1dB) 1) 3.4 -10...+70 26 HTR 300-SB SC<br />

3 x 100 3 x ± 300 O/L ± 12…15 3 x 4 V DC-10 (-3dB) 1) 2.7 -10...+75 23 HTT 100-P TM<br />

150 ± 450 O/L ± 12…15 4 V DC-50 (-3dB) 1) 2.75 -40...+80 31 HTB 150-P<br />

3 x 150 3 x ± 450 O/L ± 12…15 3 x 4 V DC-10 (-3dB) 1) 2.7 -10...+75 23 HTT 150-P TM<br />

200 ± 300 O/L ± 12…15 4 V DC-8 (-1dB) 1) 3.75 -10...+70 39 HOP 200-SB SC<br />

200 ± 300 O/L + 5/0<br />

200 ± 300 O/L + 5/0<br />

U C<br />

/2 V or<br />

V ref<br />

±1.25V<br />

U C<br />

/2 V or<br />

V ref<br />

±1.25V<br />

DC-50 (-3dB) 1) 1.4 -40...+105 41 HTFS 200-P 5)<br />

DC-50 (-3dB) 1) 1.4 -40...+105 40 HTFS 200-P/SP2 5)<br />

200 ± 400 O/L ± 12…15 4 V DC-10 (-1dB) 1) 3.4 -10...+70 26 HTR 200-SB SC<br />

200 ± 500 O/L ± 12…15 4 V DC-50 (-3dB) 1) 2.75 -40...+80 31 HTB 200-P<br />

300 ± 600 O/L ± 12…15 4 V DC-50 (-3dB) 1) 2.75 -40...+80 31 HTB 300-P<br />

300 ± 600 O/L + 12…15<br />

U C<br />

/2 V +/-<br />

1.667 V<br />

DC-50 (-3dB) 1) 1.5 -25...+85 33 HTB 300-P/SP5<br />

300 ± 900 O/L ± 15 4 V DC-50 (-3dB) 1) 2.7 -10...+80 37 HAC 300-S<br />

300 ± 900 O/L ± 15 4 V DC-50 (-3dB) 1) 1.75 -25...+85 28 HAL 300-S<br />

300 ± 900 O/L ± 15 4 V DC-50 (-3dB) 1) 1.75 -25...+85 38 HTA 300-S<br />

300 ± 900 O/L ± 15 4 V DC-50 (-3dB) 1) 2.5 -10...+80 29 HAS 300-S<br />

300 ± 900 O/L ± 15 4 V DC-50 (-3dB) 1) 2.5 -10...+80 30 HAS 300-P<br />

300 ± 900 O/L + 5/0<br />

2.5V or V ref<br />

±0.625V<br />

DC-50 (-3dB) 1) 1.4 -40...+85 35 HASS 300-S 5)<br />

26<br />

28<br />

23<br />

31<br />

33<br />

38<br />

39<br />

42<br />

40<br />

29<br />

30<br />

35<br />

32<br />

34<br />

Notes:<br />

1) Small signal bandwidth to avoid excessive core heating at high frequency<br />

5) Ref IN<br />

& Ref out<br />

modes<br />

SC = Split Core<br />

TM = Triplet Measurement<br />

26 Dedicated data sheets are the only recognized reference documents for the given performances and data - Data sheets: www.lem.com<br />

27<br />

37<br />

41


I PN = 100 A ... 150 A<br />

I PN<br />

I P<br />

A A<br />

Technology<br />

U C<br />

V out<br />

I out<br />

V<br />

@ I PN<br />

BW<br />

kHz<br />

X @ I PN<br />

T A<br />

= 25°C<br />

%<br />

T A<br />

°C<br />

PCB<br />

Connection<br />

Primary<br />

Aperture,<br />

busbar,<br />

other<br />

Secondary<br />

PCB<br />

Other<br />

UR or UL<br />

Packaging No<br />

Type<br />

Features<br />

I PN = 150 A ... 366 A<br />

DRS / REU<br />

Closed-loop<br />

DRS / REU<br />

I PN<br />

A<br />

I P<br />

A<br />

Technology<br />

U C<br />

V<br />

V out<br />

I out<br />

@ I PN<br />

BW<br />

kHz<br />

X @ I PN<br />

T A<br />

= 25°C<br />

%<br />

T A<br />

°C<br />

PCB<br />

Connection<br />

Primary<br />

Aperture,<br />

busbar,<br />

other<br />

Secondary<br />

PCB<br />

Other<br />

UR or UL<br />

Packaging No<br />

Closed-loop<br />

Type<br />

Features<br />

100 ± 150 C/L ± 12…15 50 mA DC-200 (-1dB) 0.45 6) -40...+85 24 LA 100-P<br />

150 ± 212 C/L ± 12…15 150 mA DC-150 (-1dB) 0.5 -40...+85 Pending 51 LA 150-P/SP1<br />

DRS / REU<br />

100 ± 150 C/L ± 12…15 50 mA DC-200 (-1dB) 0.45 6) -40...+85 25 LA 100-TP<br />

100 ± 160 C/L ± 12…15 100 mA DC-200 (-1dB) 0.45 6) -25...+70 24<br />

LA 100-P/<br />

SP13<br />

100 ± 160 C/L ± 12…15 50 mA DC-200 (-1dB) 0.3 -25...+85 27 LAH 100-P<br />

150 ± 212 C/L ± 12…15 75 mA DC-150 (-1dB) 0.5 -40...+85 Pending 52 LA 150-TP<br />

200 ± 300 C/L ± 12…15 100 mA DC-100 (-1dB) 0.65 -40...+85 47 LA 200-P<br />

200 ± 300 C/L ± 12…15 100 mA DC-100 (-1dB) 0.65 -25...+85 47 LA 200-P/SP4<br />

DRS / REU<br />

100 ± 200 C/L ± 12…15 100 mA DC-100 (-3dB) 0.4 -40...+85 43 LF 205-S/SP3<br />

200 ± 300 C/L ± 12…15 100 mA DC-100 (-1dB) 0.45 -25...+85 53 LAF 200-S<br />

125 ± 200 C/L ± 12…15 125 mA DC-100 (-1dB) 0.8 -40...+85 47 LA 125-P<br />

200 ± 420 C/L ± 12…15 100 mA DC-100 (-3dB) 0.4 -40...+85 43 LF 205-S<br />

125 ± 200 C/L ± 12…15 62.5 mA DC-100 (-1dB) 0.8 -25...+85 47 LA 125-P/SP1<br />

200 ± 420 C/L ± 12…15 100 mA DC-100 (-3dB) 0.4 -40...+85 45 LF 205-P<br />

125 ± 200 C/L ± 12…15 125 mA DC-100 (-1dB) 0.8 -25...+85 48 LA 125-P/SP3 PC<br />

200 ± 420 C/L ± 12…15 100 mA DC-100 (-3dB) 0.4 -40...+85 44 LF 205-S/SP1<br />

125 ± 300 C/L ± 12…15 62.5 mA DC-100 (-1dB) 0.8 -40...+85 47 LA 125-P/SP4<br />

200 ± 420 C/L ± 12…15 100 mA DC-100 (-3dB) 0.4 -40...+85 46 LF 205-P/SP1<br />

125 ± 200 C/L ± 12…15 125 mA DC-100 (-3dB) 0.41 -40...+85 49 LAH 125-P<br />

300 ± 500 C/L ± 12…20 150 mA DC-100 (-1dB) 0.3 -40...+85 54 LF 305-S<br />

130 ± 200 C/L ± 12…15 130 mA DC-150 (-1dB) 0.5 -40...+85 Pending 50 LA 130-P<br />

300 ± 500 C/L ± 12…20 150 mA DC-100 (-3dB) 0.3 -40...+85 55<br />

LF 305-S/<br />

SP10<br />

130 ± 200 C/L ± 12…15 65 mA DC-150 (-1dB) 0.5 -40...+85 Pending 50 LA 130-P/SP1<br />

300 ± 700 C/L ± 15 150 mA DC-50 (-3dB) 0.4 -40...+85 56 LA 306-S<br />

150 ± 212 C/L ± 12…15 75 mA DC-150 (-1dB) 0.5 -40...+85 Pending 51 LA 150-P<br />

366 ± 950 C/L ± 15 183 mA DC-100 (-1dB) 0.3 -10...+70 57 LT 305-S<br />

54<br />

53<br />

55<br />

25<br />

27<br />

56<br />

43 44<br />

45<br />

46<br />

49<br />

57<br />

24<br />

50 51 52<br />

47<br />

48<br />

Notes:<br />

6) Accuracy calculated with max electrical offset instead of typical electrical offset @ U C<br />

= ± 15 V<br />

PC = Pin Compatible LT 100-P<br />

28 Dedicated data sheets are the only recognized reference documents for the given performances and data - Data sheets: www.lem.com<br />

29


I PN = 400 A ... 500 A<br />

I PN<br />

A<br />

I P<br />

A<br />

Technology<br />

U C<br />

V<br />

V out<br />

I out<br />

@ I PN<br />

BW<br />

kHz<br />

X @ I PN<br />

T A<br />

= 25°C<br />

%<br />

DRS / REU I PN = 500 A ... 800 A<br />

DRS / REU<br />

T A<br />

°C<br />

PCB<br />

Primary<br />

Connection<br />

Aperture,<br />

busbar, other<br />

PCB<br />

Secondary<br />

Other<br />

Open-loop Closed-loop Open-loop<br />

UR or UL<br />

Packaging No<br />

Type<br />

Features<br />

I PN<br />

A<br />

I P<br />

A<br />

Technology<br />

U C<br />

V<br />

V out<br />

I out<br />

@ I PN<br />

BW<br />

kHz<br />

X @ I PN<br />

T A<br />

= 25°C<br />

%<br />

T A<br />

°C<br />

PCB<br />

Primary<br />

Connection<br />

Aperture,<br />

busbar, other<br />

PCB<br />

Secondary<br />

Other<br />

UR or UL<br />

Packaging No<br />

Type<br />

Features<br />

400 ± 600 O/L ± 12…15 4 V DC-50 (-3dB) 1) 2.75 -40...+80 31 HTB 400-P<br />

500 ± 1000 O/L ± 12…15 4 V DC-10 (-1dB) 1) 3.4 -10...+70 26 HTR 500-SB SC<br />

DRS / REU<br />

400 ± 600 O/L + 12…15 U C<br />

/2 V +/- 1.667 V DC-50 (-3dB) 1) 1.5 -25...+85 33 HTB 400-P/SP5<br />

400 ± 600 O/L ± 12…15 4 V DC-8 (-1dB) 1) 3.75 -10...+70 39 HOP 400-SB SC<br />

400 ± 600 O/L + 5/0<br />

400 ± 600 O/L + 5/0<br />

U C<br />

/2 V or V ref<br />

±1.25V<br />

U C<br />

/2 V or V ref<br />

±1.25V<br />

DC-50 (-3dB) 1) 1.4 -40...+105 41 HTFS 400-P 5)<br />

DC-50 (-3dB) 1) 1.4 -40...+105 40<br />

HTFS 400-P/<br />

SP2 5)<br />

400 ± 800 O/L ± 12…15 4 V DC-10 (-1dB) 1) 3.4 -10...+70 26 HTR 400-SB SC<br />

400 ± 900 O/L ± 15 4 V DC-50 (-3dB) 1) 2.5 -10...+80 29 HAS 400-S<br />

500 ± 1000 O/L ± 15 4 V DC-50 (-3dB) 1) 1.75 -25...+85 28 HAL 500-S<br />

500 ± 1000 O/L ± 15 4 V DC-50 (-3dB) 1) 1.75 -25...+85 38 HTA 500-S<br />

500 ± 1500 O/L ± 15 4 V DC-50 (-3dB) 1) 2.7 -10...+80 37 HAC 500-S<br />

500 ± 1500 O/L ± 15 4 V DC-25 (-3dB) 1) 1.75 -40...+105 42 HAT 500-S<br />

500 ± 1500 O/L ± 15 4 V DC-25 (-3dB) 1) 2.75 -25...+85 61 HAX 500-S<br />

600 ± 900 O/L ± 12…15 4 V DC-8 (-1dB) 1) 3.75 -10...+70 39 HOP 600-SB SC<br />

DRS / REU<br />

400 ± 900 O/L ± 15 4 V DC-50 (-3dB) 1) 2.5 -10...+80 30 HAS 400-P<br />

600 ± 900 O/L + 5/0<br />

U C<br />

/2 V or V ref<br />

±1.25V<br />

DC-50 (-3dB) 1) 1.4 -40...+105 41 HTFS 600-P 5)<br />

400 ± 900 O/L + 5/0<br />

2.5V or V ref<br />

±0.625V<br />

DC-50 (-3dB) 1) 1.4 -40...+85 35 HASS 400-S 5)<br />

400 ± 1000 O/L ± 15 4 V DC-50 (-3dB) 1) 1.75 -25...+85 28 HAL 400-S<br />

600 ± 900 O/L ± 15 4 V DC-50 (-3dB) 1) 2.5 -10...+80 29 HAS 600-S<br />

600 ± 900 O/L ± 15 4 V DC-50 (-3dB) 1) 2.5 -10...+80 30 HAS 600-P<br />

400 ± 1000 O/L ± 15 4 V DC-50 (-3dB) 1) 1.75 -25...+85 38 HTA 400-S<br />

600 ± 900 O/L + 5/0<br />

2.5V or V ref<br />

±0.625V<br />

DC-50 (-3dB) 1) 1.4 -40...+85 35 HASS 600-S 5)<br />

400 ± 1200 O/L ± 15 4 V DC-50 (-3dB) 1) 2.7 -10...+80 37 HAC 400-S<br />

600 ± 1000 O/L ± 15 4 V DC-50 (-3dB) 1) 1.75 -25...+85 28 HAL 600-S<br />

400 ± 1200 O/L ± 15 4 V DC-25 (-3dB) 1) 1.75 -40...+105 42 HAT 400-S<br />

600 ± 1000 O/L ± 15 4 V DC-50 (-3dB) 1) 1.75 -25...+85 38 HTA 600-S<br />

500 ± 750 O/L ± 12…15 4 V DC-8 (-1dB) 1) 3.75 -10...+70 39 HOP 500-SB SC<br />

600 ± 1800 O/L ± 15 4 V DC-50 (-3dB) 1) 2.7 -10...+80 37 HAC 600-S<br />

500 ± 800 C/L ± 15…24 100 mA DC-100 (-1dB) 0.3 -40...+70 58 LF 505-S<br />

600 ± 1800 O/L ± 15 4 V DC-25 (-3dB) 1) 1.75 -40...+105 42 HAT 600-S<br />

500 ± 800 C/L ± 15…24 100 mA DC-100 (-1dB) 0.3 -10...+70 59 LF 505-S/SP15<br />

800 ± 1200 O/L + 5/0<br />

U C<br />

/2 V or V ref<br />

±1.25V<br />

DC-50 (-3dB) 1) 1.4 -40...+105 41 HTFS 800-P 5)<br />

500 ± 900 O/L ± 15 4 V DC-50 (-3dB) 1) 2.5 -10...+80 29 HAS 500-S<br />

800 ± 1200 O/L + 5/0<br />

U C<br />

/2 V or V ref<br />

±1.25V<br />

DC-50 (-3dB) 1) 1.4 -40...+105 40<br />

HTFS 800-P/<br />

SP2 5)<br />

500 ± 900 O/L ± 15 4 V DC-50 (-3dB) 1) 2.5 -10...+80 30 HAS 500-P<br />

800 ± 1600 O/L ± 12…15 4 V DC-10 (-1dB) 1) 2.5 -10...+70 60 HOP 800-SB SC<br />

500 ± 900 O/L + 5/0<br />

2.5V or V ref<br />

±0.625V<br />

DC-50 (-3dB) 1) 1.4 -40...+85 35 HASS 500-S 5)<br />

500 ± 1000 O/L ± 12…15 4 V DC-10 (-1dB) 1) 2.5 -10...+70 60<br />

HOP 500-SB/<br />

SP1<br />

SC<br />

800 ± 1800 O/L ± 15 4 V DC-50 (-3dB) 1) 2.7 -10...+80 37 HAC 800-S<br />

800 ± 2400 O/L ± 15 4 V DC-25 (-3dB) 1) 1.75 -40...+105 42 HAT 800-S<br />

42<br />

39<br />

33 26<br />

38<br />

61<br />

40<br />

31<br />

33<br />

41<br />

37<br />

60<br />

35<br />

29<br />

33 30<br />

28<br />

Notes:<br />

58<br />

1) Small signal bandwidth to avoid excessive core heating at high frequency<br />

59<br />

5) Ref IN<br />

& Ref out<br />

modes<br />

SC = Split Core<br />

30 Dedicated data sheets are the only recognized reference documents for the given performances and data - Data sheets: www.lem.com<br />

31


I PN = 500 A AC<br />

... 2000 A AC<br />

I PN<br />

A AC<br />

Technology<br />

U C<br />

V<br />

V out<br />

I out<br />

@ I P<br />

BW<br />

kHz<br />

X @ I P<br />

T A<br />

= 25°C<br />

%<br />

T A<br />

°C<br />

PCB<br />

Primary<br />

Aperture,<br />

busbar,<br />

other<br />

PCB<br />

Secondary<br />

Other<br />

UR or UL<br />

Packaging No<br />

Type<br />

Features<br />

I PN = 2000 A ... 20000 A<br />

DRS / REU<br />

Rogowski<br />

DRS / REU<br />

Connection<br />

BW<br />

I PN<br />

A<br />

I P<br />

A<br />

Technology<br />

U C<br />

V<br />

V out<br />

I out<br />

@ I PN<br />

kHz<br />

X @ I PN<br />

T A<br />

= 25°C<br />

%<br />

T A<br />

°C<br />

Open-loop<br />

PCB<br />

Connection<br />

Primary<br />

Aperture,<br />

busbar,<br />

other<br />

Secondary<br />

PCB<br />

Other<br />

Closed-loop<br />

UR or UL<br />

Packaging No<br />

Type<br />

Fluxgate<br />

Features<br />

DRS / REU<br />

500 Rogowski<br />

500 Rogowski<br />

2000 Rogowski<br />

2000 Rogowski<br />

Self<br />

powered<br />

Self<br />

powered<br />

Self<br />

powered<br />

Self<br />

powered<br />

2..M. f.I<br />

3) 4)<br />

PAC<br />

V<br />

M.dI P<br />

/dt V 2) 4) 700 (+3dB) 0.65 4) 7) -10...+65<br />

3) 4)<br />

2..M. f.I PAC<br />

V<br />

M.dI P<br />

/dt V 2) 4) 700 (+3dB) 0.80 4) 7) -10...+65<br />

2..M. f.I PAC<br />

V<br />

3) 4)<br />

M.dI P<br />

/dt V 2) 4) 500 (+3dB) 0.65 4) 7) -10...+65<br />

2..M. f.I PAC<br />

V<br />

3) 4)<br />

M.dI P<br />

/dt V 2) 4) 430 (+3dB) 0.8 4) 7) -10...+65<br />

Split core<br />

Ø 55 mm<br />

Max<br />

Split core<br />

Ø 55 mm<br />

Max<br />

Split core<br />

Ø 125 mm<br />

Max<br />

Split core<br />

Ø 125 mm<br />

Max<br />

1.5 m<br />

cable<br />

3 m<br />

cable<br />

1.5 m<br />

cable<br />

3 m<br />

cable<br />

62 RT 500<br />

63 RT 500/SP1<br />

64 RT 2000<br />

65 RT 2000/SP1<br />

2000 ± 5500 O/L ± 15 4 V DC-25 (-3dB) 1) 2.75 -25...+85 61 HAX 2000-S<br />

2000 ± 5500 O/L ± 15 4 V DC- 25(-1dB) 1) 2.75 -10...+80 70 HAXC 2000-S<br />

2500 ± 5500 O/L ± 15 4 V DC-25 (-3dB) 1) 2.75 -25...+85 61 HAX 2500-S<br />

4000 ± 4000 O/L ± 15 10 V DC-3 (-3dB) 1) 2 -25...+85 71 HAZ 4000-SB<br />

4000 ± 4000 O/L ± 15 20 mA DC-3 (-3dB) 1) 2 -25...+85 71 HAZ 4000-SBI<br />

4000 ± 4000 O/L ± 15<br />

4 mA @ -I PN<br />

20 mA @ +I PN<br />

DC-3 (-3dB) 1) 2 -25...+85 71<br />

HAZ 4000-SBI/<br />

SP1<br />

4000 ± 6000 C/L ± 24 800 mA DC-100 (-1dB) 0.3 -25...+70 72 LT 4000-S<br />

DRS / REU<br />

I PN = 1000 A ... 2000 A<br />

Open-loop<br />

Closed-loop<br />

4000 ± 6000 C/L ± 24 800 mA DC-100 (-1dB) 0.3 -25...+70 73 LT 4000-T<br />

4000 ± 12000<br />

Fluxgate<br />

IT<br />

± 24 1600 mA DC- 50(1dB) 8) 0.06 9) -40...+70 74 ITL 4000-S<br />

I PN<br />

A<br />

I P<br />

A<br />

Technology<br />

U C<br />

V<br />

V out<br />

I out<br />

@ I PN<br />

BW<br />

kHz<br />

X @ I PN<br />

T A<br />

= 25°C<br />

%<br />

T A<br />

°C<br />

PCB<br />

Connection<br />

Primary<br />

Aperture,<br />

busbar,<br />

other<br />

Secondary<br />

PCB<br />

Other<br />

UR or UL<br />

Packaging No<br />

Type<br />

Features<br />

6000 ± 6000 O/L ± 15 10 V DC-3 (-3dB) 1) 2 -25...+85 71 HAZ 6000-SB<br />

6000 ± 6000 O/L ± 15 20 mA DC-3 (-3dB) 1) 2 -25...+85 71 HAZ 6000-SBI<br />

6000 ± 6000 O/L ± 15<br />

4 mA @ -I PN<br />

20 mA @ +I PN<br />

DC-3 (-3dB) 1) 2 -25...+85 71<br />

HAZ 6000-SBI/<br />

SP1<br />

10000 ± 10000 O/L ± 15 10 V DC-3 (-3dB) 1) 2 -25...+85 71 HAZ 10000-SB<br />

1000 ± 1000 O/L ± 15 4 V DC-50 (-3dB) 1) 1.75 -25...+85 38 HTA 1000-S<br />

1000 ± 1500 C/L ± 15…24 200 mA DC-150 (-1dB) 0.3 -40...+85 66 LF 1005-S<br />

1000 ± 1500 C/L ± 15…24 200 mA DC-150 (-1dB) 0.3 -10...+85 67 LF 1005-S/SP22<br />

1000 ± 2000 O/L ± 12…15 4 V DC-10 (-1dB) 1) 2.5 -10...+70 60 HOP 1000-SB SC<br />

1000 ± 2500 O/L ± 15 4 V DC-25 (-3dB) 1) 1.75 -40...+105 42 HAT 1000-S<br />

1000 ± 3000 O/L ± 15 4 V DC-25 (-3dB) 1) 2.75 -25...+85 61 HAX 1000-S<br />

1200 ± 2500 O/L ± 15 4 V DC-25 (-3dB) 1) 1.75 -40...+105 42 HAT 1200-S<br />

1500 ± 2500 O/L ± 15 4 V DC-25 (-3dB) 1) 1.75 -40...+105 42 HAT 1500-S<br />

1500 ± 3000 O/L ± 12…15 4 V DC-10 (-1dB) 1) 2.5 -10...+70 60 HOP 1500-SB SC<br />

1500 ± 4500 O/L ± 15 4 V DC-25 (-3dB) 1) 2.75 -25...+85 61 HAX 1500-S<br />

2000 ± 3000 O/L ± 12…15 4 V DC-10 (-1dB) 1) 2.5 -10...+70 60 HOP 2000-SB SC<br />

2000 ± 3000 O/L ± 12…15 4 V DC-4 (-1dB) 1) 2.5 -10...+70 68 HOP 2000-SB/SP1 SC<br />

10000 ± 10000 O/L ± 15 20 mA DC-3 (-3dB) 1) 2 -25...+85 71 HAZ 10000-SBI<br />

10000 ± 10000 O/L ± 15<br />

4 mA @ -I PN<br />

20 mA @ +I PN<br />

DC-3 (-3dB) 1) 2 -25...+85 71<br />

HAZ 10000-SBI/<br />

SP1<br />

10000 ± 15000 C/L ± 48…60 1 A DC-100 (-1dB) 0.3 -25...+70 75 LT 10000-S<br />

12000 ± 12000 O/L ± 15 10 V DC-3 (-3dB) 1) 2 -25...+85 71 HAZ 12000-SB<br />

12000 ± 12000 O/L ± 15 20 mA DC-3 (-3dB) 1) 2 -25...+85 71 HAZ 12000-SBI<br />

12000 ± 12000 O/L ± 15<br />

4 mA @ -I PN<br />

20 mA @ +I PN<br />

DC-3 (-3dB) 1) 2 -25...+85 71<br />

HAZ 12000-SBI/<br />

SP1<br />

14000 ± 14000 O/L ± 15 10 V DC-3 (-3dB) 1) 2 -25...+85 71 HAZ 14000-SB<br />

14000 ± 14000 O/L ± 15 20 mA DC-3 (-3dB) 1) 2 -25...+85 71 HAZ 14000-SBI<br />

14000 ± 14000 O/L ± 15<br />

4 mA @ -I PN<br />

20 mA @ +I PN<br />

DC-3 (-3dB) 1) 2 -25...+85 71<br />

HAZ 14000-SBI/<br />

SP1<br />

20000 ± 20000 O/L ± 15 10 V DC-3 (-3dB) 1) 2 -25...+85 71 HAZ 20000-SB<br />

20000 ± 20000 O/L ± 15 20 mA DC-3 (-3dB) 1) 2 -25...+85 71 HAZ 20000-SBI<br />

2000 ± 3000 C/L ± 15…24 400 mA DC-100 (-1dB) 0.2 -40...+85 69 LF 2005-S<br />

66<br />

61<br />

42<br />

67<br />

70<br />

20000 ± 20000 O/L ± 15<br />

4 mA @ -I PN<br />

20 mA @ +I PN<br />

DC-3 (-3dB) 1) 2 -25...+85 71<br />

75<br />

HAZ 20000-SBI/<br />

SP1<br />

72 73<br />

74<br />

Notes:<br />

1) Small signal bandwidth to avoid<br />

excessive core heating at high frequency<br />

2) Instantaneous<br />

3) For sinusoidal wave (f in Hz)<br />

4) M= Transfer ratio 0.064 H (+/- 5%):<br />

38 60<br />

RT models are provided with up to<br />

62 63 64 65<br />

71<br />

5 % manufacturing tolerance<br />

68<br />

7) Max positioning error<br />

8) 40 A RMS<br />

69<br />

9) X G<br />

= Global accuracy<br />

SC = Split Core<br />

32 Dedicated data sheets are the only recognized reference documents for the given performances and data - Data sheets: www.lem.com<br />

33


Current Transducers - Minisens<br />

DRS / REU<br />

DRS / REU<br />

Minisens – FHS model<br />

From 2 to 100 Amps<br />

To help your innovation,<br />

we make ourselves small.<br />

Traditional measurement systems are not used in markets<br />

such as low power domestic electrical products and air<br />

conditioning systems for a number of reasons. If isolation<br />

is needed in a shunt-based system, an optocoupler is<br />

also necessary, adding to the cost and bulk. For <strong>current</strong><br />

measurements over approximately 10 A, the losses in the<br />

shunt become significant resulting in an unacceptable<br />

temperature rise. At lower <strong>current</strong> levels, the shunt will<br />

need to have a high resistance to ensure that its output is<br />

not too small. Generally, an amplifier may also be needed.<br />

Until today, these factors have been major limitations<br />

for the use of <strong>current</strong> measurement in smaller electrical<br />

systems. However, there is a growing demand for <strong>current</strong><br />

measurement in such systems, as inverter control of<br />

electric motors becomes more popular, for greater<br />

control of speed and position, and improved energy<br />

efficiency. Fortunately, new techniques allow producing<br />

smaller and lower-cost <strong>transducers</strong> that can make <strong>current</strong><br />

measurement a reality in such systems.<br />

The trend in power electronics is not different to that in<br />

other electronics fields: a greater degree of integration<br />

coupled with a lower component count.<br />

Minisens, FHS integrated LEM <strong>current</strong> transducer, for<br />

AC and DC isolated <strong>current</strong> measurement up to 100<br />

kHz, shows the way. This new product combines all the<br />

necessary electronics with a Hall-effect sensor and<br />

magnetic concentrators in a single eight-pin, surfacemount<br />

package (Fig. 1): A step towards miniaturization and<br />

manufacturing cost reduction (as part of a standard PCB<br />

assembly process).<br />

It can be isolated simply by mounting it on a printed<br />

circuit board on the opposite side to the track carrying<br />

the <strong>current</strong> to be measured, does not suffer from losses<br />

and can make use of PCB design techniques to adjust<br />

sensitivity and therefore remove the need for an amplifier.<br />

Working principle:<br />

Minisens/FHS converts the magnetic field of a sensed<br />

<strong>current</strong> into a <strong>voltage</strong> output. This ‘primary’ <strong>current</strong> flows<br />

in a cable or PCB track near the IC and is electrically<br />

isolated from it. Hall effect devices integrated in the<br />

IC are used to measure the magnetic field, this field<br />

being focused in the region of the Hall cells by magnetic<br />

concentrators placed on top of the IC.<br />

The IC sensitivity to the magnetic field of the primary<br />

<strong>current</strong> is 600 mV/mT max.<br />

This is the basic working principle of the<br />

Hall effect open-loop technology, but<br />

all incorporated into a single small IC<br />

package.<br />

The <strong>current</strong> sensed can be<br />

either positive or negative.<br />

The polarity of the magnetic<br />

field is detected to generate<br />

either a positive or negative<br />

<strong>voltage</strong> output around a <strong>voltage</strong><br />

reference defined as the initial<br />

offset at no field. The standard<br />

initial offset is 2.5 V (internal<br />

reference). The user can specify<br />

an external reference between<br />

+2 and +2.8 V.<br />

It is manufactured in a standard<br />

CMOS process and assembled in a<br />

SO8-IC package.<br />

Design considerations:<br />

Ip 1<br />

The most common way to use Minisens is to locate it over<br />

a PCB track that is carrying the <strong>current</strong> that needs to be<br />

measured. To optimise the function of the transducer,<br />

some simple rules need to be applied to the track<br />

dimensions. By varying the PCB and track configuration,<br />

it is possible to measure <strong>current</strong>s ranging from 2 to 100<br />

Amps. One possible configuration places the IC directly<br />

over a single PCB track (Fig. 2).<br />

In this configuration, isolation is provided by the distance<br />

between the pins of the transducer and the track, and<br />

<strong>current</strong>s in the range from 2 to 20 A can be measured.<br />

Insulation can be improved by placing the transducer<br />

on the opposite side of the board, but still directly over<br />

the line of the track. The thickness of the board and the<br />

track itself will both affect the sensitivity, as they directly<br />

influence the distance between the sensing elements<br />

(located into the IC) and the position of the primary<br />

conductor. Sensitivity is also affected by the width of<br />

r<br />

the track (Fig. 3). It is important to note that sensitivity is<br />

greater for thinner tracks. However, the thinner the track,<br />

the quicker the temperature rises.<br />

Sensitivity (mV/A)<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

1<br />

Sensitivity function of track to magnetic sensor distance<br />

(70 microns thick track)<br />

nominal distance for a<br />

top side track<br />

1.235 2.905<br />

2 2.5 3 3.5<br />

1.5<br />

1 mm wide track<br />

2 mm wide track<br />

3 mm wide track<br />

nominal distance for a<br />

bottom side track<br />

with 1.6 mm PCB<br />

track axis to sensor distance (mm)<br />

Fig. 3: Sensitivity (mV/A) versus track width and distance<br />

between the track and the sensing elements.<br />

The maximum <strong>current</strong> that can be safely applied<br />

continuously is determined by the temperature rise of<br />

the track and the ambient temperature. The use of a<br />

track with varying width gives the best combination<br />

of sensitivity and track temperature rise. To maintain<br />

temperature levels, the width, thickness and shape of the<br />

track are very important. Minisens’ maximum operating<br />

temperature is 125°C.<br />

For low <strong>current</strong>s (under 10 A), it is advisable to make<br />

several turns with the primary track or to use a narrow<br />

track to increase the magnetic field generated by the<br />

primary <strong>current</strong>.<br />

As with a single track, it is better to have wider tracks<br />

around the Minisens than under it (to reduce temperature<br />

rise) (Figs. 4 and 5).<br />

This configuration is also possible on the opposite side of<br />

the PCB to the Minisens providing then a higher insulation<br />

configuration (Fig. 5) as creepage and clearance distances<br />

are improved (longer).<br />

The sensitivity can be increased further by other<br />

techniques, such as using a “jumper” (wire) over the<br />

Minisens to create a loop with the PCB track, or multiple<br />

turns can be implemented in different PCB layers. Larger<br />

<strong>current</strong>s can be measured by positioning the transducer<br />

farther from the primary conductor or by using a wider<br />

PCB track or busbar. Designs are unlimited, under PCB<br />

designer’s control, and can lead to needs for insulation,<br />

nominal <strong>current</strong> to measure, sensitivity optimisation, etc.<br />

This is full design flexibility.<br />

Special features for added value:<br />

Two outputs are available: one filtered, to limit the noise<br />

bandwidth, and one unfiltered which has a response<br />

time under 3 μs, for <strong>current</strong> short-circuit detection (IGBT<br />

protection) or threshold detection.<br />

Minisens operates from a + 5 V power supply. To reduce<br />

power consumption in sensitive applications, it can be<br />

switched to a standby mode by means of an external<br />

signal to reduce the consumption from 20 milliamps to 20<br />

microamps.<br />

In addition, a special care to the adjacent perturbing<br />

(stray) fields has to be brought.<br />

DRS / REU<br />

Figs. 4 and 5: Possible “multi-turn” designs.<br />

Fig. 2: One possible PCB design; The track is located<br />

underneath the Minisens<br />

Fig. 1: Minisens - FHS model<br />

34 35


Current Transducers - Minisens DRS / REU<br />

Minisens overall accuracy<br />

DRS / REU<br />

Minisens related:<br />

• Gain: +/- 3 % (better measured)<br />

• Initial offset: +/- 10 mV<br />

• Linearity: +/- 1.5 % (better measured)<br />

• Offset drift: +/- 0.15 mV/K<br />

• Gain drift: +/- 300 ppm/K<br />

In concrete application on a PCB<br />

Overall accuracy (% of I PN )<br />

At + 25° C (Initial offset compensated): 4 % to 7 %<br />

Over temperature range ( ... + 85° C): 5 % to 8 %<br />

With calibration:<br />

(over temperature range ( ... + 85° C) < 4 %<br />

These mechanical parameters must be closely controlled<br />

in the production process. Alternatively, in-circuit<br />

calibration of the Minisens or the DSP can be used to<br />

avoid most of these errors.<br />

Evaluate Minisens in your<br />

application: Evaluation kits<br />

Several PCBs (Figs. 6 and 7) have been developed to<br />

demonstrate Minisens as a <strong>current</strong> transducer in different<br />

applications, and to validate simulations which were made<br />

to predict the transducer sensitivity: These are available<br />

on request for application testing.<br />

LEM design guides are also available to orientate and<br />

advise PCB designers in the building of their PCBs<br />

when using Minisens, in order to optimise the use of the<br />

transducer (on request).<br />

Two typical examples will show the advantages offered by<br />

Minisens in today’s applications:<br />

Washing Machines:<br />

Designers of modern washing machines are looking<br />

for more accurate control of the electric motor, to save<br />

energy by improving the efficiency of the system and<br />

Mechanical design related<br />

(distance and shape variations of the primary conductor vs<br />

the IC):<br />

• PCB thickness<br />

• Copper tracks thickness/width<br />

• Solder joints thickness<br />

• Correct positioning of Minisens<br />

protect the environment by adjusting<br />

washing time and water usage. They are<br />

also aiming to improve the performance<br />

of the machine, in terms of out-of balance<br />

detection, vibration reduction, different<br />

programs for different types of clothes<br />

and noise reduction. An inverter-based<br />

system offers this finer control, allowing<br />

the designer to have both new and<br />

improved functions. Such a system needs<br />

accurate measurement of motor <strong>current</strong>,<br />

and two Minisens <strong>transducers</strong> can be<br />

mounted directly onto the control PCB to<br />

provide the necessary measurements.<br />

Air-conditioning units:<br />

Traditionally, air-conditioning units have<br />

relied on simple on/off control of the<br />

motor. However, this has resulted in a<br />

wide variation of temperature and has required a relatively<br />

large motor, which is either off or running at full power<br />

– resulting in a lot of noise. Modern air conditioners use<br />

inverter control, starting the motor at full speed to adjust<br />

the temperature coarsely and then reducing the speed<br />

and oscillating closely around the target temperature<br />

(Fig. 9).<br />

Such a system produces less noise, requires less power<br />

to maintain the target temperature, and can use a smaller<br />

motor. Japanese air-conditioner manufacturers have<br />

already moved to this method and those in the United<br />

States, China and Europe are now following.<br />

Low cost UPSs as well as battery chargers<br />

can benefit from Minisens to ensure<br />

the <strong>current</strong> control as well as<br />

the fault protection (<strong>current</strong><br />

overload detection) or to<br />

detect <strong>current</strong> presence.<br />

This fault protection<br />

function has to be fulfilled<br />

for electrical shutters,<br />

door openers and other<br />

equipment of that nature.<br />

Fig. 8: Motor control in washing machines<br />

DRS / REU<br />

Fig. 6: Minisens kits with low isolation<br />

(0.4 mm clearance/creepage)<br />

Kit 4 Kit 6 Kit 7<br />

Fig. 7: Minisens kits with<br />

high isolation<br />

(8 mm clearance/<br />

creepage)<br />

Kit 5 Kit 9 Kit 8<br />

Fig. 9: Inverter control vs. conventional control<br />

I PN (A) @ Tamb = 85° C<br />

(Tpcb max 115° C)<br />

1 turn With jumper Multi turns<br />

16 10 5<br />

I PN (A) @ Tamb = 85° C<br />

(Tpcb max 115° C)<br />

1 turn 1 turn Multi turns<br />

16 30 5<br />

I PM (A) @ V out = 2 V<br />

30 10 11<br />

I PM (A) @ V out = 2 V<br />

55 78 16<br />

Sensitivity (mV/A)<br />

@ 600 mV/mT<br />

67.2 206.2 186.1<br />

Sensitivity (mV/A)<br />

@ 600 mV/mT<br />

36.3 25.8 125.6<br />

Picture provided by courtesy<br />

of PsiControl mechatronics<br />

36 37


I PN = 2 A ... 2000 A<br />

X @<br />

DRS / REU<br />

CT<br />

PRIME I PN = 5 A ... 20000 A<br />

DRS / REU<br />

Open-loop<br />

Signal conditioning<br />

type<br />

I PN<br />

A<br />

Technology<br />

U C<br />

V<br />

BW<br />

kHz<br />

II PN<br />

T A<br />

=<br />

25 °C<br />

%<br />

T A<br />

°C<br />

Aperture<br />

mm<br />

Split Core<br />

DIN Rail<br />

Output<br />

UR or UL<br />

Packaging No<br />

Type<br />

Features<br />

Signal conditioning<br />

type<br />

I PN<br />

A<br />

Technology<br />

U C<br />

V<br />

BW<br />

kHz<br />

X @ II PN<br />

T A<br />

= 25<br />

°C<br />

%<br />

T A<br />

°C<br />

Aperture<br />

mm<br />

Split Core<br />

DIN Rail<br />

Output<br />

UR or UL<br />

Packaging No<br />

Type<br />

Features<br />

DRS / REU<br />

AC<br />

instantaneous<br />

50 CT<br />

100 CT<br />

5, 10, 20, 50,<br />

100, 150<br />

5, 10, 20, 50,<br />

100, 150<br />

10, 20, 50,<br />

100, 150, 200<br />

2, 5, 10, 20,<br />

50, 100,<br />

150, 200<br />

10, 20, 50,<br />

AC RMS 100, 150, 200<br />

2, 5, 10, 20,<br />

50, 100,<br />

150, 200<br />

AC True<br />

RMS<br />

10, 25, 50,<br />

75, 100,<br />

150, 200,<br />

300, 400<br />

10, 25, 50,<br />

75, 100,<br />

150, 200,<br />

300, 400<br />

2, 5, 10, 20,<br />

50, 100,<br />

150, 200<br />

2, 5, 10, 20,<br />

50, 100,<br />

150, 200<br />

10, 25, 50,<br />

75, 100,<br />

150, 200,<br />

300, 400<br />

10, 25, 50,<br />

75, 100,<br />

150, 200,<br />

300, 400<br />

CT<br />

CT<br />

CT<br />

CT<br />

CT<br />

CT<br />

Self<br />

powered<br />

Self<br />

powered<br />

0.05…0.06 1 -20...+70 ø 8 0-16mA 155 TT 50-SD<br />

0.05…0.06 1 -20...+70 ø 16 0-33mA 156 TT 100-SD<br />

Self<br />

powered 0.05…0.06 1.5 a) -20...+60 ø 16 0-5/10 V DC<br />

157 AT 5..150 B5/10 RMS (average) output<br />

Loop<br />

powered<br />

+20…30<br />

0.05…0.06 1.5 a) -20...+60 ø 16 4-20 mA DC<br />

158 AT 5..150 B420L RMS (average) output<br />

V DC<br />

Self<br />

21.7 x<br />

0.05…0.06 1 -20...+50<br />

powered 21.7<br />

O 0-10 V DC<br />

159 AK 50..200 B10 RMS (average) output<br />

Loop<br />

powered 0.02…0.1 1 -20...+50 21.7 x<br />

+24 V<br />

21.7<br />

DC<br />

O 4-20 mA DC<br />

159 AK 5..200 B420L RMS (average) output<br />

Self<br />

powered 0.05…0.06 1 -20...+50 ø 19 O 0-10 V DC<br />

161 AK 50..200 C10 RMS (average) output<br />

Loop<br />

powered<br />

+24 V DC<br />

0.02…0.1 1 -20...+50 ø 19 O 4-20 mA DC<br />

161 AK 5..200 C420L RMS (average) output<br />

PRiME +24 V DC<br />

0.03…2 1 a) -20...+60 ø 18.5 0-5/10 V DC<br />

162 AP 50..400 B5/10<br />

PRiME<br />

CT<br />

CT<br />

Loop<br />

powered<br />

+12…24<br />

V DC<br />

0.03…2 1 a) -20...+60 ø 18.5 4-20 mA DC<br />

163 AP 50..400 B420L<br />

Loop<br />

powered 0.01…0.4 1 -20...+50 21.7 x<br />

+24 V<br />

21.7<br />

DC<br />

O 4-20 mA DC<br />

160 AKR 5..200 B420L<br />

Loop<br />

powered 0.01…0.4 1 -20...+50 ø 19 O 4-20 mA DC<br />

161 AKR 5..200 C420L<br />

+24 V DC<br />

PRiME +24 V DC<br />

0.03…6 1 a) -20...+60 ø 18.5 0-5/10 V DC<br />

162 APR 50..400 B5/10<br />

PRiME<br />

375, 500, 750 CT<br />

1000, 1333,<br />

2000<br />

CT<br />

Loop<br />

powered<br />

+12..24<br />

0.03…6 1 a) -20...+60 ø 18.5 4-20 mA DC<br />

163 APR 50..400 B420L<br />

V DC<br />

Loop<br />

powered 0.01…0.4 1 -20...+50 ø 76 4-20 mA DC<br />

164 AKR 750 C420L J<br />

+24 V DC<br />

Loop<br />

powered 0.01…0.4 1 -20...+50 ø 76 4-20 mA DC<br />

164 AKR 2000 C420L J<br />

+24 V DC<br />

RMS output (average)<br />

0-5/10 V DC<br />

switch selectable<br />

<strong>voltage</strong> output<br />

Switch selectable<br />

measuring ranges<br />

RMS output (average)<br />

Switch selectable<br />

measuring ranges<br />

True RMS output<br />

Switch selectable<br />

measuring ranges<br />

True RMS output<br />

Switch selectable<br />

measuring ranges<br />

True RMS output (average)<br />

0-5/10 V DC<br />

switch selectable<br />

<strong>voltage</strong> output<br />

Switch selectable<br />

measuring ranges<br />

True RMS output<br />

Switch selectable<br />

measuring ranges<br />

True RMS output<br />

Switch selectable<br />

measuring ranges<br />

True RMS output<br />

Switch selectable<br />

measuring ranges<br />

DC &<br />

AC True<br />

RMS<br />

DC<br />

DC<br />

Bipolar<br />

100, 200,<br />

300, 400,<br />

500, 600,<br />

1000<br />

100, 200,<br />

300, 400,<br />

500, 600,<br />

1000<br />

500, 800,<br />

1000, 1500,<br />

2000<br />

500, 800,<br />

1000, 1500,<br />

2000<br />

4k, 6k,<br />

10k, 12k,<br />

14k, 20k<br />

4k, 6k,<br />

10k, 12k,<br />

14k, 20k<br />

4k, 6k,<br />

10k, 12k,<br />

14k, 20k<br />

50, 75,<br />

100, 150,<br />

200, 225,<br />

300, 400<br />

50, 75,<br />

100, 150,<br />

200, 225,<br />

300, 400<br />

50, 75,<br />

100, 150,<br />

200, 225,<br />

300, 400<br />

O/L<br />

O/L<br />

O/L<br />

O/L<br />

+20..50<br />

V DC<br />

+20..50<br />

V DC<br />

+20..50<br />

V DC<br />

+20..50<br />

V DC<br />

DC &<br />

0.02…6<br />

DC &<br />

0.02…6<br />

DC &<br />

0.02…6<br />

DC &<br />

0.02…6<br />

O/L +/- 15 V DC<br />

DC &<br />

0.015…3<br />

O/L +/- 15 V DC<br />

DC &<br />

0.015…3<br />

O/L +/- 15 V DC<br />

DC &<br />

0.015…3<br />

O/L<br />

O/L<br />

O/L<br />

50, 75,<br />

100, 150, O/L<br />

200, 225,<br />

300, 400<br />

5, 10, 20,<br />

50, 75, 100 O/L<br />

500, 800,<br />

1000, 1500,<br />

2000<br />

O/L<br />

1 a) -40...+70 ø 32<br />

1 a) -40...+70 ø 32<br />

1 a) -40...+70 104 x 40 <br />

1 a) -40...+70 104 x 40 <br />

0-5/10<br />

V DC<br />

165 DHR 100..1000 C5/10<br />

4-20<br />

mA DC<br />

165 DHR 100..1000 C420<br />

UL from 100 to 400 A<br />

True RMS output<br />

UL from 100 to 400 A<br />

True RMS output<br />

0-5/10<br />

V DC<br />

166 AHR 500..2000 B5/10 True RMS output<br />

4-20<br />

mA DC<br />

166 AHR 500..2000 B420 True RMS output<br />

1 a) -25...+85 162 x 42 0-10 V DC<br />

71 HAZ 4000..20000 -SRU True RMS output<br />

1 a) -25...+85 162 x 42<br />

1 a) -25...+85 162 x 42<br />

+20..45<br />

V DC<br />

DC 2 -20...+50<br />

+20..45<br />

V DC<br />

DC 2 -20...+50<br />

+20..45<br />

V DC<br />

DC 2 -20...+50<br />

21.7 x<br />

21.7<br />

21.7 x<br />

21.7<br />

21.7 x<br />

21.7<br />

+20..45<br />

V DC<br />

DC 1 b) -20...+50 21.7 x<br />

21.7<br />

+20..45<br />

V DC<br />

DC 1 -20...+50 ø 19.1 O<br />

<br />

<br />

<br />

O<br />

O<br />

O<br />

0-20<br />

mA DC<br />

71 HAZ 4000..20000 -SRI True RMS output<br />

4-20<br />

mA DC<br />

71<br />

HAZ 4000..20000<br />

-SRI/SP1<br />

0-5/10<br />

V DC<br />

167 DK 100..400 B5/10<br />

4-20<br />

mA DC<br />

167 DK 100..400 B420<br />

0-20<br />

mA DC<br />

167 DK 100..400 B020<br />

O 4-20 167 DK 100..400 B420 B<br />

mA DC<br />

4-20<br />

mA DC<br />

168 DK 20..100 C420 B<br />

Loop<br />

powered<br />

+20…30<br />

V DC<br />

DC 1 a) -10...+70 104 x 40 4-20 mA 169 DH 500..2000 B420L B<br />

True RMS output<br />

Magnitude only - Not the<br />

direction<br />

Switch selectable<br />

measuring ranges<br />

Unipolar <strong>voltage</strong> output<br />

Magnitude only - Not the<br />

direction - 4 mA at Ip=0<br />

Switch selectable<br />

measuring ranges<br />

Unipolar <strong>current</strong> output<br />

Magnitude only - Not the<br />

direction - 0 mA at Ip=0<br />

Switch selectable<br />

measuring ranges<br />

Unipolar <strong>current</strong> output<br />

DC bipolar measurement<br />

(magnitude and direction)<br />

12 mA at Ip = 0<br />

DC bipolar measurement<br />

(magnitude and direction)<br />

12 mA at Ip = 0<br />

DC bipolar measurement<br />

(magnitude and direction)<br />

12 mA at Ip = 0<br />

DRS / REU<br />

71<br />

157<br />

158<br />

155<br />

156<br />

164<br />

166<br />

169<br />

162 163<br />

Notes:<br />

a) Excluding offset<br />

b) 2% for 400 A model<br />

O with adapter<br />

UL listed<br />

recognized<br />

168 161<br />

165<br />

159<br />

160<br />

167<br />

38 Dedicated data sheets are the only recognized reference documents for the given performances and data - Data sheets: www.lem.com<br />

39


V PN = 10 V ... 2500 V<br />

V PN = 500 V ... 4200 V<br />

DRS / REU<br />

Closed-loop<br />

DRS / REU<br />

IDT<br />

Closed-loop<br />

Fluxgate<br />

I PN<br />

(V PN<br />

)<br />

mA<br />

I P<br />

(V P<br />

)<br />

mA<br />

Technology<br />

U C<br />

V<br />

I out<br />

@ I PN<br />

BW<br />

kHz<br />

X G<br />

T A<br />

= 25 °C<br />

% @ I PN<br />

with max offset taken<br />

T A<br />

°C<br />

UR or UL<br />

Packaging No<br />

Type<br />

±V PN<br />

V<br />

±V P<br />

V<br />

Technology<br />

U C<br />

V<br />

V out<br />

I out<br />

@ V PN<br />

BW<br />

kHz<br />

X G<br />

T A<br />

= 25 °C<br />

% @ V PN<br />

with max<br />

offset<br />

taken<br />

T A<br />

°C<br />

UR or UL<br />

Packaging No<br />

Type<br />

Connection<br />

primary<br />

Connection<br />

secondary<br />

DRS / REU<br />

10 (10 to 500 V) ± 14 (700 V) C/L ± 12…15 25 mA Note c) 0.9 0...+70 76 LV 25-P d)<br />

10 (100 to 2500 V) ± 20 (5000 V) C/L ± 15 50 mA Note c) 0.7 0...+70 77 LV 100 e)<br />

V PN = 50 V ... 400 V<br />

IDT<br />

Closed-loop<br />

Fluxgate<br />

500 750<br />

750 1125<br />

1000 1500<br />

1000 1500<br />

1200 1800<br />

Insulating digital<br />

technology<br />

Insulating digital<br />

technology<br />

Insulating digital<br />

technology<br />

Insulating digital<br />

technology<br />

Insulating digital<br />

technology<br />

± 15…24 50 mA DC-14 (-3dB) 0.5 -40...+85 78 DVL 500 2 x M5<br />

± 15…24 50 mA DC-14 (-3dB) 0.5 -40...+85 78 DVL 750 2 x M5<br />

± 15…24 50 mA DC-14 (-3dB) 0.5 -40...+85 78 DVL 1000 2 x M5<br />

3 x M5 +<br />

Faston<br />

3 x M5 +<br />

Faston<br />

3 x M5 +<br />

Faston<br />

± 15…24 50 mA DC-12 (3dB) 0.3 -40...+85 81 DV 1000 Cable Cable<br />

± 15…24 50 mA DC-12 (3dB) 0.3 -40...+85 82 DV 1200/SP2 Cable M5 + Faston<br />

DRS / REU<br />

±V PN<br />

V<br />

±V P<br />

V<br />

50 75<br />

125 188<br />

150 225<br />

250 375<br />

Technology<br />

Insulating digital<br />

technology<br />

Insulating digital<br />

technology<br />

Insulating digital<br />

technology<br />

Insulating digital<br />

technology<br />

U C<br />

V<br />

V out<br />

I out<br />

@ V PN<br />

BW<br />

kHz<br />

X G<br />

T A<br />

= 25 °C<br />

% @ V PN<br />

with max<br />

offset taken<br />

T A<br />

°C<br />

UR or UL<br />

Packaging No<br />

Type<br />

± 15…24 50 mA DC-14 (-3dB) 0.5 -40...+85 78 DVL 50 2 x M5<br />

± 15…24 50 mA DC-14 (-3dB) 0.5 -40...+85 78 DVL 125 2 x M5<br />

± 15…24 50 mA DC-14 (-3dB) 0.5 -40...+85 78 DVL 150 2 x M5<br />

± 15…24 50 mA DC-14 (-3dB) 0.5 -40...+85 78 DVL 250 2 x M5<br />

Connection<br />

primary<br />

Connection<br />

secondary<br />

3 x M5 +<br />

Faston<br />

3 x M5 +<br />

Faston<br />

3 x M5 +<br />

Faston<br />

3 x M5 +<br />

Faston<br />

1500 2250<br />

1500 2250<br />

2000 3000<br />

2000 3000<br />

2000 3000<br />

2000 3000<br />

2800 4200<br />

3000 4500<br />

Insulating digital<br />

technology<br />

Insulating digital<br />

technology<br />

Insulating digital<br />

technology<br />

Insulating digital<br />

technology<br />

Insulating digital<br />

technology<br />

Insulating digital<br />

technology<br />

Insulating digital<br />

technology<br />

Insulating digital<br />

technology<br />

± 15…24 50 mA DC-14 (-3dB) 0.5 -40...+85 78 DVL 1500 2 x M5<br />

3 x M5 +<br />

Faston<br />

± 15…24 50 mA DC-12 (3dB) 0.3 -40...+85 82 DV 1500 Cable M5 + Faston<br />

± 15…24 50 mA DC-14 (-3dB) 0.5 -40...+85 78 DVL 2000 2 x M5<br />

3 x M5 +<br />

Faston<br />

± 15…24 50 mA DC-12 (3dB) 0.3 -40...+85 81 DV 2000 Cable Cable<br />

± 15…24 50 mA DC-12 (3dB) 0.3 -40...+85 82 DV 2000/SP1 Cable M5 + Faston<br />

± 15…24 50 mA DC-12 (3dB) 0.3 -40...+85 83 DV 2000/SP2 M5 M5<br />

± 15…24 50 mA DC-12 (3dB) 0.3 -40...+85 84 DV 2800/SP4 M5 M5<br />

± 15…24 50 mA DC-12 (3dB) 0.35 -40...+85 84 DV 3000/SP1 M5 M5<br />

200 300 C/L ± 12…15 25 mA Note c) 0.9 -25...+70 O 79 LV 25-200 Faston Faston<br />

4200 6000<br />

Insulating digital<br />

technology<br />

± 15…24 50 mA DC-12 (3dB) 0.3 -40...+85 81 DV 4200/SP3 Cable Cable<br />

400 600 C/L ± 12…15 25 mA Note c) 0.9 -25...+70 O 79 LV 25-400 Faston Faston<br />

4200 6000<br />

Insulating digital<br />

technology<br />

± 15…24 50 mA DC-12 (3dB) 0.3 -40...+85 84 DV 4200/SP4 M5 M5<br />

140 200 Fluxgate “C” ± 15 10 V/200 V DC-300 (-1dB) 0.2 @ Vp -40...+85 80 CV 3-200 2 x M5 4 x M5<br />

600 900 C/L ± 12…15 25 mA Note c) 0.9 -25...+70 79 LV 25-600 Faston Faston<br />

350 500 Fluxgate “C” ± 15 10 V/500 V DC-300 (-1dB) 0.2 @ Vp -40...+85 80 CV 3-500 2 x M5 4 x M5<br />

800 1200 C/L ± 12…15 25 mA Note c) 0.9 -25...+70 79 LV 25-800 Faston Faston<br />

77<br />

78<br />

81<br />

82<br />

83<br />

84<br />

1000 1500 C/L ± 12…15 25 mA Note c) 0.9 -25...+70 79 LV 25-1000 Faston Faston<br />

1200 1800 C/L ± 12…15 25 mA Note c) 0.9 -25...+70 79 LV 25-1200 Faston Faston<br />

2500 3750 C/L ± 15 50 mA Note c) 0.9 0...+70 85 LV 100-2500 2 x M5<br />

3000 4500 C/L ± 15 50 mA Note c) 0.9 0...+70 85 LV 100-3000 2 x M5<br />

3 x M5 +<br />

Faston<br />

3 x M5 +<br />

Faston<br />

3500 4500 C/L ± 15 50 mA Note c) 0.9 0...+70 85 LV 100-3500 2 x M5<br />

3 x M5 +<br />

Faston<br />

4000 6000 C/L ± 15 50 mA Note c) 0.9 0...+70 85 LV 100-4000 2 x M5<br />

3 x M5 +<br />

Faston<br />

700 1000 Fluxgate “C” ± 15 10 V/1000 V<br />

DC-500<br />

(-1dB @ 50 % V PN<br />

)<br />

0.2 @ V P<br />

-40...+85 80 CV 3-1000 2 x M5 4 x M5<br />

840 1200 Fluxgate “C” ± 15 10 V/1200 V<br />

DC-800<br />

(-1dB @ 40% V PN<br />

)<br />

0.2 @ V P<br />

-40...+85 80 CV 3-1200 2 x M5 4 x M5<br />

1000 1500 Fluxgate “C” ± 15 10 V/1500 V<br />

DC-800<br />

(-1dB @ 33% V PN<br />

)<br />

0.2 @ V P<br />

-40...+85 80 CV 3-1500 2 x M5 4 x M5<br />

76 80<br />

85<br />

1400 2000 Fluxgate “C” ± 15 10 V/2000 V<br />

DC-300<br />

(-1dB @ 25% V PN<br />

)<br />

0.2 @ V P<br />

-40...+85.+85<br />

80 CV 3-2000 2 x M5 4 x M5<br />

79<br />

Notes:<br />

c) See response time in individual data sheet<br />

d) The primary and secondary connections of this transducer are done on PCB<br />

e) Mechanical Mounting<br />

O) Recognition pending<br />

40 Dedicated data sheets are the only recognized reference documents for the given performances and data - Data sheets: www.lem.com<br />

41


Wi-LEM<br />

Wireless Local Energy Meter<br />

DRS / REU<br />

Battery Powered<br />

Temperature &<br />

Humidity Transducer<br />

Wi-LEM COMPONENTS<br />

Energy Meter Node (EMN):<br />

DRS / REU<br />

Pulse Counter<br />

(Gas*,Electricity,<br />

Water)<br />

Wi-Pulse<br />

Wi-Zone<br />

Wi-Temp<br />

Open Data<br />

Architecture<br />

(Modbus Protocol)<br />

Single or three phase energy meter with embedded wireless<br />

data transmission module<br />

Measurement ranges:<br />

- Current from 20 to 2000 A<br />

- Voltage from 90 to 500 VAC<br />

DRS / REU<br />

Mesh Gate<br />

Auto-Configuration<br />

Measurement values:<br />

Compact Size<br />

Energy Meter Node<br />

Mesh Node<br />

Split-Core<br />

Current measurement<br />

Easy Mounting<br />

Received Signal<br />

Strength Indication<br />

Current (A)<br />

Voltage (V)<br />

Active Energy (kWh)<br />

Reactive Energy (kVarh)<br />

Apparent Energy (kVA)<br />

Frequency<br />

Interval Based Values<br />

(5 to 30 minutes Configurable Reading Intervals)<br />

L1<br />

L2<br />

L3<br />

SUM<br />

Avg Min Max Avg Min Max Avg Min Max<br />

L1<br />

Cummulated<br />

Values<br />

L2<br />

L3<br />

SUM<br />

Applications :<br />

Comprehensive Monitoring Solution<br />

Cut Installation Costs<br />

Easy Commissioning<br />

- Establish the breakdown of energy use (where does it all go?)<br />

- Allocate energy wastes to users<br />

- Determine efficiency of equipment<br />

- Audit before & after energy use for retrofit projects<br />

- Manage the load profile (peak demand)<br />

- Maintenance and Entreprise Asset Management<br />

Wi-Pulse:<br />

A transducer that counts and transmits pulses coming from<br />

meters like water or gas*<br />

Wi-Zone:<br />

Temperature and Humidity transducer<br />

Wi-Temp:<br />

Two inputs thermistors based temperature sensors<br />

Mesh Gate:<br />

A gateway managing the mesh network (up to 200 Nodes).<br />

It provides data through serial interface to a PC or RTU<br />

Mesh Node:<br />

Repeater linking various Nodes. They enable wireless<br />

communication throughout a large installation<br />

* an additional intrinsic safety barrier module is needed<br />

42 Dedicated data sheets are the only recognized reference documents for the given performances and data - Data sheets: www.lem.com<br />

43


I PN = 0.4 A ... 400 A<br />

TTR - On-Board<br />

Closed-loop<br />

I PN = 400 A ... 500 A<br />

TTR - On-Board<br />

Closed-loop<br />

I PN<br />

A<br />

I P<br />

A<br />

Technology<br />

U C<br />

V<br />

V out<br />

I out<br />

@ I PN<br />

BW<br />

kHz<br />

X @ I PN<br />

T A<br />

= 25 °C<br />

X G @ I PN<br />

T A<br />

= 25 °C<br />

% %<br />

T A<br />

°C<br />

PCB<br />

Connection<br />

Primary Secondary<br />

Aperture,<br />

busbar,<br />

other<br />

PCB<br />

Other<br />

UR or UL<br />

Packaging No<br />

Type<br />

Features<br />

I PN<br />

A<br />

I P<br />

A<br />

Technology<br />

U C<br />

V<br />

V out<br />

I out<br />

@ I PN<br />

BW<br />

kHz<br />

X @ I PN<br />

T A<br />

= 25 °C<br />

X G @ I PN<br />

T A<br />

= 25 °C<br />

% %<br />

T A<br />

°C<br />

PCB<br />

Connection<br />

Primary Secondary<br />

Aperture,<br />

busbar,<br />

other<br />

PCB<br />

Other<br />

UR or UL<br />

Packaging No<br />

Type<br />

Features<br />

0.4 ± 0.85 C/L ± 15 30 mA DC-150 (-1dB) 0.5 0.8 -40...+85 1 LA 25-NP/SP38<br />

400 ± 650 C/L ± 15 100 mA DC-50 (-3dB) 0.4 1 -40...+85<br />

Aperture<br />

13x30 mm<br />

Molex 108 LAC 300-S<br />

Molex<br />

70543-0003<br />

1.5 ± 2.2 C/L ± 15 24 mA DC-150 (-1dB) 0.5 0.9 -40...+85 1 LA 25-NP/SP34<br />

400 ± 1000 C/L ± 15 133 mA DC-50 (-3dB) 0.4 1.2 -40...+75<br />

Aperture<br />

13x30 mm<br />

Cable 109<br />

LAC 300-S/<br />

SP7<br />

TTR<br />

2 ± 2.5 C/L ± 15 40 mA DC-150 (-1dB) 0.5 0.7 -40...+85 1 LA 25-NP/SP39<br />

5 ± 7 C/L ± 15 25 mA DC-150 (-1dB) 0.5 0.9 -40...+85 22 LA 25-NP/SP25<br />

350 ± 1200 C/L ± 15…24 175 mA DC-100 (-1dB) 0.3 0.5 -40...+85 Ø 27.5 mm 4 x M5 112 LTC 350-S Screen<br />

350 ± 1200 C/L ± 15…24 175 mA DC-100 (-1dB) 0.3 0.5 -40...+85 Ø 27.5 mm<br />

4 x M5<br />

+ Faston<br />

113 LTC 350-SF<br />

With feet<br />

Screen<br />

6 ± 9 C/L ± 15 24 mA DC-150 (-1dB) 0.5 0.9 -40...+85 22 LA 25-NP/SP25<br />

350 ± 1200 C/L ± 15…24 175 mA DC-100 (-1dB) 0.3 0.5 -40...+85 Busbar<br />

4 x M5<br />

+ Faston<br />

114 LTC 350-T Screen<br />

8 ± 12 C/L ± 15 24 mA DC-150 (-1dB) 0.5 0.9 -40...+85 22 LA 25-NP/SP25<br />

350 ± 1200 C/L ± 15…24 175 mA DC-100 (-1dB) 0.3 0.5 -40...+85 Busbar<br />

4 x M5<br />

+ Faston<br />

115 LTC 350-TF<br />

With feet<br />

Screen<br />

12 ± 18 C/L ± 15 24 mA DC-150 (-1dB) 0.5 0.9 -40...+85 22 LA 25-NP/SP25<br />

25 ± 36 C/L ± 15 25 mA DC-150 (-1dB) 0.5 0.9 -40...+85 22 LA 25-NP/SP25<br />

500 ± 700 C/L ± 24 100 mA DC-100 (-1dB) 0.4 1 -30...+70<br />

Split core<br />

Aperture<br />

67x67 mm<br />

AMP 111<br />

LA 500-SD/<br />

SP2<br />

AMP CPC 11/4<br />

100 ± 200 C/L ± 12…15<br />

130<br />

±<br />

1000<br />

100<br />

mA<br />

DC-100 (-3dB) 0.4 0.6 -40...+85<br />

C/L ± 24 65 mA DC-50 (-3dB) 0.5 1.45 -40...+85<br />

200 ± 400 C/L ± 24 50 mA DC-50 (-3dB) 0.5 1 -40...+85<br />

200 ± 420 C/L ± 12…15<br />

100<br />

mA<br />

DC-100 (-3dB) 0.4 0.5 -40...+85<br />

200 ± 500 C/L ± 24 40 mA DC-100 (-1dB) 0.7 1 -30...+70<br />

200 ± 700 C/L ± 15<br />

300 ± 500 C/L ± 12…20<br />

300 ± 640 C/L ± 15<br />

100<br />

mA<br />

150<br />

mA<br />

100<br />

mA<br />

DC-50 (-3dB) 0.5 1.25 -40...+85<br />

Ø 15.5<br />

mm<br />

Aperture<br />

13x30 mm<br />

Aperture<br />

13x30 mm<br />

Ø 15.5<br />

mm<br />

Split core<br />

Aperture<br />

67x67 mm<br />

Aperture<br />

13x30 mm<br />

Molex 44 LF 205-S/SP5<br />

Molex 108<br />

Cable 110<br />

LAC 300-S/<br />

SP5<br />

LAC 300-S/<br />

SP8<br />

Molex 44 LF 205-S/SP1<br />

AMP 111<br />

Molex 108<br />

LA 200-SD/<br />

SP3<br />

LAC 300-S/<br />

SP1<br />

DC-100 (-3dB) 0.3 0.47 -40...+85 Ø 20 mm Molex 55 LF 305-S/SP10<br />

DC-50 (-3dB) 0.4 1 -40...+85<br />

300 ± 910 C/L ± 24 60 mA DC-50 (-3dB) 0.5 1.4 -40...+85<br />

400 ± 600 C/L ± 15 80 mA DC-50 (-3dB) 0.4 1.1 -40...+85<br />

Aperture<br />

13x30 mm<br />

Aperture<br />

13x30 mm<br />

Aperture<br />

13x30 mm<br />

Molex 108<br />

Molex 108<br />

Molex 108<br />

LAC 300-S/<br />

SP2<br />

LAC 300-S/<br />

SP4<br />

LAC 300-S/<br />

SP3<br />

Molex Minifi t<br />

5566<br />

Molex<br />

70543-0003<br />

Molex Minifi t<br />

5566<br />

AMP CPC 11/4<br />

Molex<br />

70543-0003<br />

Molex Minifi t<br />

5566<br />

Molex<br />

70543-0003<br />

Molex<br />

70543-0003<br />

Molex<br />

70543-0003<br />

500 ± 1000 C/L ± 24 100 mA DC-100 (-1dB) 0.3 0.6 -40...+85<br />

Ø 30.2<br />

mm<br />

500 ± 1200 C/L ± 15…24 125 mA DC-100 (-1dB) 0.4 0.6 -40...+85 Ø 27.5 mm<br />

500 ± 1200 C/L ± 15…24 125 mA DC-100 (-1dB) 0.4 0.6 -40...+85 Ø 27.5 mm<br />

500 ± 1200 C/L ± 15…24 125 mA DC-100 (-1dB) 0.4 0.6 -40...+85 Busbar<br />

500 ± 1200 C/L ± 15…24 125 mA DC-100 (-1dB) 0.4 0.6 -40...+85 Busbar<br />

500 ± 1500 C/L ± 15…24 100 mA DC-100 (-1dB) 0.3 0.7 -40...+85 Ø 42 mm<br />

500 ± 1500 C/L ± 15…24 100 mA DC-100 (-1dB) 0.3 0.7 -40...+85 Ø 42 mm<br />

500 ± 1500 C/L ± 15…24 100 mA DC-100 (-1dB) 0.3 0.7 -40...+85 Ø 42 mm<br />

500 ± 1500 C/L ± 15…24 100 mA DC-100 (-1dB) 0.3 0.7 -40...+85 Busbar<br />

500 ± 1500 C/L ± 15…24 100 mA DC-100 (-1dB) 0.3 0.7 -40...+85 Busbar<br />

Cable 116<br />

4 x M5<br />

+ Faston<br />

4 x M5<br />

+ Faston<br />

4 x M5<br />

+ Faston<br />

4 x M5<br />

+ Faston<br />

4 x M5<br />

+ Faston<br />

4 x M5<br />

+ Faston<br />

4 x M5<br />

+ Faston<br />

4 x M5<br />

+ Faston<br />

4 x M5<br />

+ Faston<br />

LF 505-S/<br />

SP23<br />

Screen<br />

112 LTC 500-S Screen<br />

113 LTC 500-SF<br />

With feet<br />

Screen<br />

114 LTC 500-T Screen<br />

115 LTC 500-TF<br />

With feet<br />

Screen<br />

117 LTC 600-S Screen<br />

118 LTC 600-SF<br />

119 LTC 600-SFC<br />

With feet<br />

Screen<br />

With feet +<br />

clamp<br />

Screen<br />

120 LTC 600-T Screen<br />

121 LTC 600-TF<br />

With feet<br />

Screen<br />

TTR<br />

1 22<br />

108<br />

109<br />

110<br />

55<br />

113<br />

118<br />

119<br />

112<br />

44<br />

117<br />

120<br />

111<br />

114<br />

121<br />

116<br />

115<br />

44<br />

Dedicated data sheets are the only recognized reference documents for the given performances and data - Data sheets: www.lem.com<br />

45


I PN = 1000 A ... 2000 A<br />

I PN<br />

A<br />

I P<br />

A<br />

Technology<br />

U C<br />

V<br />

V out<br />

I out<br />

@ I PN<br />

BW<br />

kHz<br />

X @ I PN<br />

T A<br />

= 25°C<br />

X G @ I PN<br />

T A<br />

= 25°C<br />

% %<br />

T A<br />

°C<br />

TTR<br />

PCB<br />

Primary<br />

Connection<br />

Aperture,<br />

busbar,<br />

other<br />

PCB<br />

Secondary<br />

Other<br />

UR or UL<br />

Packaging No<br />

Type<br />

Features<br />

I PN = 2000 A ... 4000 A<br />

Open-loop Closed-loop Fluxgate<br />

Open-loop<br />

Closed-loop<br />

Fluxgate<br />

I PN<br />

A<br />

I P<br />

A<br />

Technology<br />

U C<br />

V<br />

V out<br />

I out<br />

@ I PN<br />

BW<br />

kHz<br />

X @ I PN<br />

T A<br />

= 25°C<br />

X G @ I PN<br />

T A<br />

= 25°C<br />

% %<br />

T A<br />

°C<br />

TTR<br />

PCB<br />

Primary<br />

Connection<br />

Aperture,<br />

busbar,<br />

other<br />

PCB<br />

Secondary<br />

Other<br />

UR or UL<br />

Packaging No<br />

Type<br />

Features<br />

1000 ± 1100 O/L ± 15 10 V<br />

DC-10<br />

(-3dB) 1) 1.8 2.3 -40...+85 Ø 40 mm Screws 122 HTC 1000-S/SP4<br />

2000 ± 3500 C/L ± 15…24 400 mA<br />

DC-150<br />

(-1dB)<br />

0.2 0.325 -40...+85 Ø 56 mm LEMO 129 LF 2005-S/SP1<br />

LEMO EEJ.1B.304.<br />

CYC<br />

Internal screen<br />

1000 ± 1500 C/L ± 24 200 mA<br />

1000 ± 2400 C/L ± 15…24 200 mA<br />

DC-150<br />

(-1dB)<br />

DC-100<br />

(-1dB)<br />

0.3 0.5 -40...+85<br />

Ø 38.5<br />

mm<br />

0.3 0.4 -40...+85 Ø 42 mm<br />

4 x M4 123 LF 1005-S/SP14 Screen<br />

4 x M5<br />

+ Faston<br />

117 LTC 1000-S Screen<br />

2000 ± 3500 C/L ± 15…24 400 mA<br />

2000 ± 3500 C/L ± 15…24 400 mA<br />

DC-100<br />

(-1dB)<br />

DC-100<br />

(-1dB)<br />

0.2 0.325 -40...+80 Ø 56 mm LEMO 130 LF 2005-S/SP27<br />

0.5 0.55 -40...+85 Ø 56 mm 4 x M5 131 LF 2005-S/SP28 Screen<br />

LEMO EEJ.1B.304.<br />

CYC<br />

Internal screen<br />

Reversed <strong>current</strong><br />

1000 ± 2400 C/L ± 15…24 250 mA<br />

DC-100<br />

(-1dB)<br />

0.3 0.4 -40...+85 Ø 42 mm<br />

4 x M5<br />

+ Faston<br />

124 LTC 1000-S/SP1 Screen<br />

3000 ± 3300 O/L ± 15 10 V<br />

DC-10<br />

(-3dB) 1) 1.8 2.3 -40...+85 Ø 40 mm Screws 122 HTC 3000-S/SP4<br />

TTR<br />

1000 ± 3000 C/L ± 15…24 250 mA<br />

1000 ± 2400 C/L ± 15…24 200 mA<br />

1000 ± 2400 C/L ± 15…24 200 mA<br />

1000 ± 2400 C/L ± 15…24 200 mA<br />

DC-100<br />

(-1dB)<br />

DC-100<br />

(-1dB)<br />

DC-100<br />

(-1dB)<br />

DC-100<br />

(-1dB)<br />

0.3 0.4 -40...+85 Ø 42 mm 4 x Faston 125 LTC 1000-S/SP25 Screen<br />

0.3 0.4 -40...+85 Ø 42 mm<br />

0.3 0.4 -40...+85 Ø 42 mm<br />

0.3 0.4 -40...+85 Ø 42 mm<br />

4 x M5<br />

+ Faston<br />

4 x M4<br />

+ Faston<br />

4 x M5<br />

+ Faston<br />

118 LTC 1000-SF<br />

126 LTC 1000-SF/SP24<br />

119 LTC 1000-SFC<br />

With feet<br />

Screen<br />

With long feet<br />

Footprint<br />

compatible with<br />

former<br />

LT 1000-SI series<br />

Screen<br />

With feet + clamp<br />

Screen<br />

3300 ± 5000 C/L ± 24 660 mA<br />

3300 ± 5000 C/L ± 24 660 mA<br />

4000 ± 6000 C/L ± 24 800 mA<br />

4000 ± 6000 C/L ± 24 800 mA<br />

4000 ± 6000 C/L ± 24 800 mA<br />

DC-100<br />

(-1dB)<br />

DC-100<br />

(-1dB)<br />

DC-100<br />

(-1dB)<br />

DC-100<br />

(-1dB)<br />

DC-100<br />

(-1dB)<br />

0.3 0.32 -25...+70 Ø 102 mm LEMO 132 LT 4000-S/SP24<br />

LEMO EGJ.1B.304.<br />

CYC<br />

Screen<br />

0.3 0.32 -25...+70 Ø 102 mm 3 x M5 133 LT 4000-S/SP44 Internal screen<br />

0.3 0.5 -25...+70 Ø 102 mm 3 x M5 72 LT 4000-S<br />

0.3 0.5 -40...+70 Ø 102 mm AMP 134 LT 4000-S/SP12<br />

0.3 0.5 -40...+70 Ø 102 mm 3 x M5 72 LT 4000-S/SP34<br />

AMP CPC 13/9<br />

Test circuit<br />

Screen<br />

TTR<br />

1000 ± 2400 C/L ± 15…24 200 mA<br />

1000 ± 2400 C/L ± 15…24 200 mA<br />

1000 ± 2500 O/L ± 15 5 V<br />

2000 ± 2200 O/L ± 15 10 V<br />

2000 ± 3000 Fluxgate<br />

ITC<br />

± 24 800 mA<br />

DC-100<br />

(-1dB)<br />

DC-100<br />

(-1dB)<br />

0.3 0.4 -40...+85 Busbar<br />

0.3 0.4 -40...+85 Busbar<br />

DC-10<br />

(-3dB) 1) 1.7 2 -40...+70<br />

Aperture<br />

18x54 mm<br />

4 x M5<br />

+ Faston<br />

4 x M5<br />

+ Faston<br />

120 LTC 1000-T Screen<br />

121 LTC 1000-TF<br />

Burndy 127 HAR 1000-S<br />

DC-10<br />

(-3dB) 1) 1.8 2.3 -40...+85 Ø 40 mm Screws 122 HTC 2000-S/SP4<br />

DC-27<br />

(3dB) f) 0.0015 0.01 -40...+85 Ø 63 mm D-Sub 128 ITC 2000-S/SP1<br />

With feet<br />

Screen<br />

Burndy<br />

SMS6GE4<br />

Class 0.5R<br />

accuracy<br />

D-Sub male<br />

15cts<br />

Test circuit<br />

4000 ± 6000 C/L ± 24 800 mA<br />

4000 ± 6500 C/L ± 24 1 A<br />

4000 ± 6000 C/L ± 24 800 mA<br />

4000 ± 6500 C/L ± 24 1 A<br />

4000 ± 6000 Fluxgate<br />

ITC<br />

± 24 1600 mA<br />

DC-100<br />

(-1dB)<br />

DC-100<br />

(-1dB)<br />

DC-100<br />

(-1dB)<br />

DC-100<br />

(-1dB)<br />

0.3 0.5 -40...+70 Ø 102 mm LEMO 135 LT 4000-S/SP35<br />

0.3 0.5 -40...+85 Ø 102 mm Cable 136 LT 4000-S/SP43 Screen<br />

0.3 0.5 -25...+70 Busbar 3 x M5 73 LT 4000-T<br />

0.3 0.5 -40...+85 Busbar Cable 137 LT 4000-T/SP40<br />

DC-82<br />

(3dB) f) 0.0003 0.05 -40...+85 Ø 102 mm<br />

7 x M5<br />

inserts<br />

138 ITC 4000-S<br />

LEMO EGJ.1B.305.<br />

CYC<br />

Test circuit<br />

Internal screen<br />

Class 0.5R accuracy<br />

Test circuit<br />

72 132 133<br />

134 135 136<br />

73 137<br />

120<br />

121<br />

126<br />

118<br />

119<br />

117<br />

124<br />

125<br />

127<br />

122<br />

123<br />

129<br />

130<br />

128<br />

138<br />

131<br />

46<br />

Notes:<br />

f) 100 A RMS<br />

1) Small signal bandwidth to avoid excessive core heating at high frequency<br />

Dedicated data sheets are the only recognized reference documents for the given performances and data - Data sheets: www.lem.com<br />

47


LTC Series - Modular Current Transducers<br />

TTR - On-Board<br />

LTC Series - Modular Current Transducers<br />

TTR - On-Board<br />

Mechanical adaptation accessories<br />

LTC 350 - 500 models<br />

Mechanical adaptation accessories<br />

LTC 600 - 1000 models<br />

TTR<br />

TTR<br />

∅<br />

Accessories<br />

References<br />

Busbar Kit * (busbar : 155 x 25 x 6 mm) 93.34.41.100.0<br />

Busbar Kit * (busbar : 112 x 25 x 6 mm) 93.34.41.101.0<br />

Busbar Fastening Kit ** 93.34.41.200.0<br />

93.34.43.100.0<br />

* including all the necessary for its mounting<br />

such as screws, washers, nuts, 2 clamps,<br />

busbar.<br />

** as with * but without the busbar.<br />

*** including screws and 2 feet.<br />

Rms <strong>voltage</strong> value for partial discharge extinction depends on the busbar.<br />

Refer to the datasheet of the corresponding product.<br />

Lines Accessories References<br />

1 Busbar KIT * (busbar : 210 x 40 x 12 mm) 93.34.61.100.0<br />

2 Busbar KIT * (busbar : 185 x 40 x 8 mm) 93.34.61.102.0<br />

3 Busbar KIT * (busbar : 285 x 36 x 12 mm) 93.34.61.103.0<br />

4 Busbar KIT * (busbar : 260 x 36 x 12 mm) 93.34.61.104.0<br />

5 Busbar KIT * (busbar : 195 x 36 x 10 mm) 93.34.61.105.0<br />

6 Busbar KIT * (busbar : 36 mm Ø x 325 mm) 93.34.61.106.0<br />

7 Busbar KIT * (busbar : 185 x 40 x 10 mm) 93.34.61.107.0<br />

8 Busbar KIT * (busbar : 180 x 40 x 12 mm) 93.34.61.108.0<br />

9<br />

Busbar Fastening Kit (M5 x 25)** dedicated 93.34.61.200.0<br />

to busbars from lines 1 to 5 and lines 7, 8.<br />

10<br />

Busbar Fastening Kit (M5 x 40)** dedicated 93.34.61.201.0<br />

to busbar from line 6<br />

11 93.34.63.100.0<br />

* including all the necessary for its mounting<br />

such as screws, washers, nuts, 2 clamps,<br />

busbar.<br />

** as with * but without the busbar.<br />

*** including screws and 2 feet.<br />

Rms <strong>voltage</strong> value for partial discharge extinction depends on the busbar.<br />

Refer to the datasheet of the corresponding product.<br />

48 49


I PN<br />

= 2 A ... 10 A (Fault Detection)<br />

I PN<br />

A<br />

I P<br />

A<br />

2 ± 8<br />

Technology<br />

Flux<br />

“C”<br />

10 ± 10 Flux<br />

“C”<br />

U C<br />

V<br />

V out<br />

I out<br />

@ I PN<br />

± 15…24 20 mA<br />

± 24 10 V<br />

BW<br />

kHz<br />

DC-10<br />

(-3dB)<br />

DC-20<br />

(-3dB)<br />

X G<br />

@ I PN<br />

T A<br />

= 25°C<br />

%<br />

T A<br />

°C<br />

PCB<br />

Primary<br />

Connection<br />

Aperture, busbar, other<br />

Secondary<br />

PCB<br />

UR or UL<br />

Packaging No<br />

Type<br />

3 -25...+70 Ø 63.2 mm Cable 139 CD 1000-S/SP6<br />

3 -40...+70<br />

2 x Busbars:<br />

1 of 20x20x358 mm<br />

and 1 of<br />

20x20x206 mm<br />

TTR - Spec. App.<br />

Other<br />

Cable 140 CD 1000-T/SP7<br />

Fluxgate<br />

Features<br />

Differential measurement:<br />

2 x 1200 A RMS<br />

Differential measurement:<br />

I P AC<br />

= 0.1 A AC<br />

... 20 A AC<br />

(Interference Frequencies Detection)<br />

I P<br />

A AC<br />

Technology<br />

0.1…20<br />

Measurement<br />

of alternating<br />

Rogowski<br />

signal on DC<br />

primary <strong>current</strong><br />

up to 1000 ADC<br />

U C<br />

V<br />

Self<br />

powered<br />

V out<br />

I out<br />

@ I P<br />

BW<br />

kHz<br />

X @ I P<br />

T A<br />

= 25°C<br />

%<br />

T A<br />

°C<br />

PCB<br />

Primary<br />

Connection<br />

Aperture,<br />

busbar, other<br />

Secondary<br />

PCB<br />

Other<br />

UR or UL<br />

Packaging No<br />

TTR<br />

Type<br />

2..M. f.I PAC<br />

V g)<br />

0.02…3 3 -40...+85 Ø 42 mm Cable 142 RA 1005-S<br />

M.dI P<br />

/dt V 2)<br />

Rogowski<br />

Features<br />

g) For sinusoidal<br />

wave<br />

2..M= 25.10 -6 H<br />

f in Hz<br />

2) Instantaneous<br />

Test circuit<br />

V PN<br />

= 0.03 V (Shunt Isolator)<br />

IDT<br />

0.1…20<br />

Measurement<br />

of alternating<br />

signal on DC<br />

primary <strong>current</strong><br />

up to 3000 ADC<br />

Rogowski<br />

Self<br />

powered<br />

2..M. f.I PAC<br />

V h)<br />

0.02…3 3 -25...+70 Ø 102 mm Cable 143 RA 2000-S/SP1<br />

M.dI P<br />

/dt V 2)<br />

h) For sinusoidal<br />

wave<br />

2..M= 27.657.10 -6 H<br />

f in Hz<br />

2) Instantaneous<br />

Test circuit<br />

TTR<br />

V PN<br />

V P<br />

V V<br />

0.03 ± 0.045<br />

Technology<br />

Insulating<br />

digital<br />

technology<br />

U C<br />

V<br />

V out<br />

I out<br />

@ V PN<br />

BW<br />

kHz<br />

± 15…24 50 mA DC-10<br />

(3dB)<br />

X G<br />

@ V PN<br />

T A<br />

= 25°C<br />

%<br />

T A<br />

°C<br />

PCB<br />

Primary<br />

Connection<br />

Aperture,<br />

busbar,<br />

other<br />

0.2 -40...+85 Busbar<br />

PCB<br />

Secondary<br />

Other<br />

M5<br />

Connecting<br />

UR or UL<br />

Packaging No<br />

Type<br />

141 DI 30/SP1<br />

Features<br />

Shunt Isolator<br />

Class 1R accuracy<br />

vs EN50463<br />

when used with<br />

Class 0.2 shunt<br />

0.1…20<br />

Measurement<br />

of alternating<br />

signal on DC<br />

primary <strong>current</strong><br />

up to 4000 ADC<br />

0.1…20<br />

Measurement<br />

of alternating<br />

signal on DC<br />

primary <strong>current</strong><br />

up to 4000 ADC<br />

0.1…20<br />

Measurement<br />

of alternating<br />

signal on DC<br />

primary <strong>current</strong><br />

up to 4000 ADC<br />

Rogowski<br />

Rogowski<br />

Rogowski<br />

Self<br />

powered<br />

Self<br />

powered<br />

Self<br />

powered<br />

2..M. f.I PAC<br />

V h)<br />

0.02…3 3 -40...+70 Ø 102 mm Cable 144 RA 2000-S/SP2<br />

M.dI P<br />

/dt V 2)<br />

2..M. f.I PAC<br />

V h)<br />

0.02…3 3 -40...+70 Ø 102 mm<br />

M.dI P<br />

/dt V 2)<br />

2..M. f.I PAC<br />

V h)<br />

0.02…3 3<br />

M.dI P<br />

/dt V 2)<br />

-40...+70<br />

IP57<br />

LEMO<br />

connector<br />

145 RA 2000-S/SP3<br />

Ø 102 mm Cable 146 RA 2000-S/SP4<br />

h) For sinusoidal<br />

wave<br />

2..M= 27.657.10 -6 H<br />

f in Hz<br />

2) Instantaneous<br />

Test circuit<br />

h) For sinusoidal<br />

wave<br />

2..M= 27.657.10 -6 H<br />

f in Hz<br />

2) Instantaneous<br />

Test circuit<br />

h) For sinusoidal<br />

wave<br />

2..M= 27.657.10 -6 H<br />

f in Hz<br />

2) Instantaneous<br />

Test circuit<br />

TTR<br />

139 140 141<br />

0.1…20<br />

Measurement<br />

of alternating<br />

signal on DC<br />

primary <strong>current</strong><br />

up to 4000 ADC<br />

Rogowski<br />

Self<br />

powered<br />

2 x 1500 A RMS<br />

51<br />

2..M. f.I PAC<br />

V h)<br />

0.02…3 3 -40...+70<br />

M.dI P<br />

/dt V 2)<br />

Busbar<br />

20x100x340<br />

mm<br />

Cable 147 RA 2000-T/SP2<br />

h) For sinusoidal<br />

wave<br />

2..M= 27.657.10 -6 H<br />

f in Hz<br />

2) Instantaneous<br />

Test circuit<br />

143 144 145 146<br />

147<br />

142 112<br />

50<br />

Dedicated data sheets are the only recognized reference documents for the given performances and data - Data sheets: www.lem.com


I PN = 10 A ... 6000 A Open-loop<br />

Closed-loop<br />

Open-loop Closed-loop<br />

I PN<br />

A<br />

I P<br />

A<br />

Technology<br />

U C<br />

V<br />

V out<br />

I out<br />

@ I PN<br />

BW<br />

kHz<br />

X @ I PN<br />

T A<br />

= 25°C<br />

%<br />

T A<br />

°C<br />

TTR - Track. / Sub.<br />

PCB<br />

Primary<br />

Aperture,<br />

busbar, other<br />

Connection<br />

PCB<br />

Secondary<br />

Other<br />

UR or UL<br />

Packaging No<br />

Type<br />

Features<br />

I PN = 10000 A ... 20000 A<br />

I PN<br />

A<br />

I P<br />

A<br />

Technology<br />

U C<br />

V<br />

V out<br />

I out<br />

@ I PN<br />

BW<br />

kHz<br />

X @ I PN<br />

T A<br />

= 25°C<br />

%<br />

TTR - Track. / Sub.<br />

T A<br />

°C<br />

PCB<br />

Primary<br />

Connection<br />

Aperture,<br />

busbar, other<br />

PCB<br />

Secondary<br />

Other<br />

UR or UL<br />

Packaging No<br />

Type<br />

Features<br />

10 ± 20 C/L + 24<br />

4-20 mA DC<br />

-25...+55<br />

DC 1<br />

@ -/+I a) P<br />

IP67<br />

Split core<br />

Ø 15 mm<br />

0.25 m wire<br />

+ connector<br />

148 PCM 10-P<br />

10000 ± 10000 O/L ± 15 10 V DC-3 (+/-3dB) 1) 2 -25...+85<br />

Aperture<br />

162x42 mm<br />

Fujicon 71 HAZ 10000-SB<br />

Fujicon F2023A<br />

(6 terminals)<br />

10 ± 20 C/L + 24<br />

4-20 mA DC<br />

@ -/+I P<br />

DC 1 a) -25...+55<br />

Split core<br />

Ø 15 mm<br />

2 m wire 149 PCM 10-P/SP1<br />

10000 ± 10000 O/L ± 15 20 mA DC-3 (+/-3dB) 1) 2 -25...+85<br />

Aperture<br />

162x42 mm<br />

Fujicon 71 HAZ 10000-SBI<br />

Fujicon F2023A<br />

(6 terminals)<br />

TTR<br />

20 ± 40 C/L + 24<br />

20 + 20 C/L + 24<br />

20 + 20 C/L + 24<br />

20 + 20 C/L + 24<br />

20 ± 40 C/L + 24<br />

30 ± 60 C/L + 24<br />

30 + 30 C/L + 24<br />

4-20 mA DC<br />

-25...+55<br />

DC 1<br />

@ -/+I a) P<br />

IP67<br />

4-20 mA DC<br />

@ +I P<br />

DC 1 a) -25...+55<br />

4-20 mA DC<br />

@ +I P<br />

DC 1 a) -25...+55<br />

4-20 mA DC<br />

@ +I P<br />

DC 1 a) -25...+55<br />

4-20 mA DC<br />

@ -/+I P<br />

DC 1 a) -25...+55<br />

4-20 mA DC<br />

-25...+55<br />

DC 1<br />

@ -/+I a) P<br />

IP67<br />

4-20 mA DC<br />

@ +I P<br />

DC 1 a) -25...+55<br />

5 ± 25 C/L + 24 4-12 mA DC<br />

0.04-1 (-3dB) 2 a) -25...+55<br />

5 ± 25 C/L + 24 4-12 mA DC<br />

0.04-1 (-3dB) 2 a) -25...+55<br />

IP67<br />

10 ± 30 C/L + 24 4-12 mA DC<br />

0.04-1 (-3dB) 2 a) -25...+55<br />

4000 ± 4000 O/L ± 15 10 V DC-3 (+/-3dB) 1) 2 -25...+85<br />

4000 ± 4000 O/L ± 15 20 mA DC-3 (+/-3dB) 1) 2 -25...+85<br />

4000 ± 4000 O/L ± 15<br />

4 mA @ -I PN<br />

20 mA @ +I PN<br />

DC-3 (+/-3dB) 1) 2 -25...+85<br />

4000 ± 4000 O/L ± 15 0-20 mA DC<br />

DC & 0.015…3<br />

(+/-3 dB) 1) 2 -25...+85<br />

4000 ± 4000 O/L ± 15 4-20 mA DC<br />

DC & 0.015…3<br />

(+/-3 dB) 1) 2 -25...+85<br />

4000 ± 4000 O/L ± 15 0-10 V DC<br />

DC & 0.015…3<br />

(+/-3 dB) 1) 2 -25...+85<br />

6000 ± 6000 O/L ± 15 10 V DC-3 (+/-3dB) 1) 2 -25...+85<br />

6000 ± 6000 O/L ± 15 20 mA DC-3 (+/-3dB) 1) 2 -25...+85<br />

6000 ± 6000 O/L ± 15<br />

4 mA @ -I PN<br />

20 mA @ +I PN<br />

DC-3 (+/-3dB) 1) 2 -25...+85<br />

6000 ± 6000 O/L ± 15 0-20 mA DC<br />

DC & 0.015…3<br />

(+/-3 dB) 1) 2 -25...+85<br />

6000 ± 6000 O/L ± 15 4-20 mA DC<br />

DC & 0.015…3<br />

(+/-3 dB) 1) 2 -25...+85<br />

6000 ± 6000 O/L ± 15 0-10 V DC<br />

DC & 0.015…3<br />

(+/-3 dB) 1) 2 -25...+85<br />

Split core<br />

Ø 15 mm<br />

Split core<br />

Ø 15 mm<br />

Split core<br />

Ø 15 mm<br />

Split core<br />

Ø 15 mm<br />

Split core<br />

Ø 15 mm<br />

Split core<br />

Ø 15 mm<br />

Split core<br />

Ø 15 mm<br />

Split core<br />

Ø 15 mm<br />

Split core<br />

Ø 15 mm<br />

Split core<br />

Ø 15 mm<br />

Aperture<br />

162x42 mm<br />

Aperture<br />

162x42 mm<br />

Aperture<br />

162x42 mm<br />

Aperture<br />

162x42 mm<br />

Aperture<br />

162x42 mm<br />

Aperture<br />

162x42 mm<br />

Aperture<br />

162x42 mm<br />

Aperture<br />

162x42 mm<br />

Aperture<br />

162x42 mm<br />

Aperture<br />

162x42 mm<br />

Aperture<br />

162x42 mm<br />

Aperture<br />

162x42 mm<br />

0.25 m wire<br />

+ connector<br />

148 PCM 20-P<br />

3 m wire 150 PCM 20-P/SP2<br />

0.25 m wire<br />

+ connector<br />

2.5 m wire +<br />

connector<br />

151 PCM 20-P/SP3<br />

152 PCM 20-P/SP4<br />

3 m wire 150 PCM 20-P/SP6<br />

0.25 m wire<br />

+ connector<br />

148 PCM 30-P<br />

3 m wire 150 PCM 30-P/SP1<br />

0.25 m wire<br />

+ connector<br />

153 PCM 5-PR/SP1<br />

True<br />

RMS<br />

output<br />

2 m wire 154 PCM 5-PR/SP2 True RMS output<br />

0.25 m wire<br />

+ connector<br />

153 PCM 10-PR/SP1<br />

Fujicon 71 HAZ 4000-SB<br />

Fujicon 71 HAZ 4000-SBI<br />

Fujicon 71 HAZ 4000-SBI/SP1<br />

Fujicon 71 HAZ 4000-SRI<br />

Fujicon 71 HAZ 4000-SRI/SP1<br />

Fujicon 71 HAZ 4000-SRU<br />

Fujicon 71 HAZ 6000-SB<br />

Fujicon 71 HAZ 6000-SBI<br />

Fujicon 71 HAZ 6000-SBI/SP1<br />

Fujicon 71 HAZ 6000-SRI<br />

Fujicon 71 HAZ 6000-SRI/SP1<br />

Fujicon 71 HAZ 6000-SRU<br />

True<br />

RMS<br />

output<br />

Fujicon F2023A<br />

(6 terminals)<br />

Fujicon F2023A<br />

(6 terminals)<br />

Fujicon F2023A<br />

(6 terminals)<br />

True RMS output<br />

Fujicon F2023A<br />

(6 terminals)<br />

True RMS output<br />

Fujicon F2023A<br />

(6 terminals)<br />

True RMS output<br />

Fujicon F2023A<br />

(6 terminals)<br />

Fujicon F2023A<br />

(6 terminals)<br />

Fujicon F2023A<br />

(6 terminals)<br />

Fujicon F2023A<br />

(6 terminals)<br />

True RMS output<br />

Fujicon F2023A<br />

(6 terminals)<br />

True RMS output<br />

Fujicon F2023A<br />

(6 terminals)<br />

True RMS output<br />

Fujicon F2023A<br />

(6 terminals)<br />

10000 ± 10000 O/L ± 15 4 mA @ -I PN<br />

20 mA @ +I PN<br />

DC-3 (+/-3dB) 1) 2 -25...+85<br />

10000 ± 10000 O/L ± 15 0-20 mA DC<br />

DC & 0.015…3<br />

(+/-3 dB) 1) 2 -25...+85<br />

10000 ± 10000 O/L ± 15 4-20 mA DC<br />

DC & 0.015…3<br />

(+/-3 dB) 1) 2 -25...+85<br />

10000 ± 10000 O/L ± 15 0-10 V DC<br />

DC & 0.015…3<br />

(+/-3 dB) 1) 2 -25...+85<br />

12000 ± 12000 O/L ± 15 10 V DC-3 (+/-3dB) 1) 2 -25...+85<br />

12000 ± 12000 O/L ± 15 20 mA DC-3 (+/-3dB) 1) 2 -25...+85<br />

12000 ± 12000 O/L ± 15 4 mA @ -I PN<br />

20 mA @ +I PN<br />

DC-3 (+/-3dB) 1) 2 -25...+85<br />

12000 ± 12000 O/L ± 15 0-20 mA DC<br />

DC & 0.015…3<br />

(+/-3 dB) 1) 2 -25...+85<br />

12000 ± 12000 O/L ± 15 4-20 mA DC<br />

DC & 0.015…3<br />

(+/-3 dB) 1) 2 -25...+85<br />

12000 ± 12000 O/L ± 15 0-10 V DC<br />

DC & 0.015…3<br />

(+/-3 dB) 1) 2 -25...+85<br />

14000 ± 14000 O/L ± 15 10 V DC-3 (+/-3dB) 1) 2 -25...+85<br />

14000 ± 14000 O/L ± 15 20 mA DC-3 (+/-3dB) 1) 2 -25...+85<br />

14000 ± 14000 O/L ± 15 4 mA @ -I PN<br />

20 mA @ +I PN<br />

DC-3 (+/-3dB) 1) 2 -25...+85<br />

14000 ± 14000 O/L ± 15 0-20 mA DC<br />

DC & 0.015…3<br />

(+/-3 dB) 1) 2 -25...+85<br />

14000 ± 14000 O/L ± 15 4-20 mA DC<br />

DC & 0.015…3<br />

(+/-3 dB) 1) 2 -25...+85<br />

14000 ± 14000 O/L ± 15 0-10 V DC<br />

DC & 0.015…3<br />

(+/-3 dB) 1) 2 -25...+85<br />

20000 ± 20000 O/L ± 15 10 V DC-3 (+/-3dB) 1) 2 -25...+85<br />

20000 ± 20000 O/L ± 15 20 mA DC-3 (+/-3dB) 1) 2 -25...+85<br />

20000 ± 20000 O/L ± 15 4 mA @ -I PN<br />

20 mA @ +I PN<br />

DC-3 (+/-3dB) 1) 2 -25...+85<br />

20000 ± 20000 O/L ± 15 0-20 mA DC<br />

DC & 0.015…3<br />

(+/-3 dB) 1) 2 -25...+85<br />

20000 ± 20000 O/L ± 15 4-20 mADC<br />

DC & 0.015…3<br />

(+/-3 dB) 1) 2 -25...+85<br />

20000 ± 20000 O/L ± 15 0-10 V DC<br />

DC & 0.015…3<br />

(+/-3 dB) 1) 2 -25...+85<br />

Aperture<br />

162x42 mm<br />

Aperture<br />

162x42 mm<br />

Aperture<br />

162x42 mm<br />

Aperture<br />

162x42 mm<br />

Aperture<br />

162x42 mm<br />

Aperture<br />

162x42 mm<br />

Aperture<br />

162x42 mm<br />

Aperture<br />

162x42 mm<br />

Aperture<br />

162x42 mm<br />

Aperture<br />

162x42 mm<br />

Aperture<br />

162x42 mm<br />

Aperture<br />

162x42 mm<br />

Aperture<br />

162x42 mm<br />

Aperture<br />

162x42 mm<br />

Aperture<br />

162x42 mm<br />

Aperture<br />

162x42 mm<br />

Aperture<br />

162x42 mm<br />

Aperture<br />

162x42 mm<br />

Aperture<br />

162x42 mm<br />

Aperture<br />

162x42 mm<br />

Aperture<br />

162x42 mm<br />

Aperture<br />

162x42 mm<br />

Fujicon 71 HAZ 10000-SBI/SP1<br />

Fujicon 71 HAZ 10000-SRI<br />

Fujicon 71 HAZ 10000-SRI/SP1<br />

Fujicon 71 HAZ 10000-SRU<br />

Fujicon 71 HAZ 12000-SB<br />

Fujicon 71 HAZ 12000-SBI<br />

Fujicon 71 HAZ 12000-SBI/SP1<br />

Fujicon 71 HAZ 12000-SRI<br />

Fujicon 71 HAZ 12000-SRI/SP1<br />

Fujicon 71 HAZ 12000-SRU<br />

Fujicon 71 HAZ 14000-SB<br />

Fujicon 71 HAZ 14000-SBI<br />

Fujicon 71 HAZ 14000-SBI/SP1<br />

Fujicon 71 HAZ 14000-SRI<br />

Fujicon 71 HAZ 14000-SRI/SP1<br />

Fujicon 71 HAZ 14000-SRU<br />

Fujicon 71 HAZ 20000-SB<br />

Fujicon 71 HAZ 20000-SBI<br />

Fujicon 71 HAZ 20000-SBI/SP1<br />

Fujicon 71 HAZ 20000-SRI<br />

Fujicon 71 HAZ 20000-SRI/SP1<br />

Fujicon 71 HAZ 20000-SRU<br />

Fujicon F2023A<br />

(6 terminals)<br />

True RMS output<br />

Fujicon F2023A<br />

(6 terminals)<br />

True RMS output<br />

Fujicon F2023A<br />

(6 terminals)<br />

True RMS output<br />

Fujicon F2023A<br />

(6 terminals)<br />

Fujicon F2023A<br />

(6 terminals)<br />

Fujicon F2023A<br />

(6 terminals)<br />

Fujicon F2023A<br />

(6 terminals)<br />

True RMS output<br />

Fujicon F2023A<br />

(6 terminals)<br />

True RMS output<br />

Fujicon F2023A<br />

(6 terminals)<br />

True RMS output<br />

Fujicon F2023A<br />

(6 terminals)<br />

Fujicon F2023A<br />

(6 terminals)<br />

Fujicon F2023A<br />

(6 terminals)<br />

Fujicon F2023A<br />

(6 terminals)<br />

True RMS output<br />

Fujicon F2023A<br />

(6 terminals)<br />

True RMS output<br />

Fujicon F2023A<br />

(6 terminals)<br />

True RMS output<br />

Fujicon F2023A<br />

(6 terminals)<br />

Fujicon F2023A<br />

(6 terminals)<br />

Fujicon F2023A<br />

(6 terminals)<br />

Fujicon F2023A<br />

(6 terminals)<br />

True RMS output<br />

Fujicon F2023A<br />

(6 terminals)<br />

True RMS output<br />

Fujicon F2023A<br />

(6 terminals)<br />

True RMS output<br />

Fujicon F2023A<br />

(6 terminals)<br />

TTR<br />

148 149<br />

152<br />

153<br />

150 151 71<br />

154<br />

Notes:<br />

a) Exclude electrical offset<br />

1) Small signal bandwidth to avoid excessive core heating at high frequency<br />

52<br />

Dedicated data sheets are the only recognized reference documents for the given performances and data - Data sheets: www.lem.com<br />

53


V PN = 10 V ... 1500 V TTR - On-Board Closed-loop V PN = 140 V ... 4200 V TTR - On-Board<br />

IDT<br />

Fluxgate<br />

II PN<br />

(V PN<br />

)<br />

mA<br />

I P<br />

(V P<br />

)<br />

mA<br />

Technology<br />

U C<br />

V<br />

I out<br />

@ II PN<br />

BW<br />

kHz<br />

X G<br />

T A<br />

= 25 °C<br />

% @ II PN<br />

with max<br />

offset taken<br />

T A<br />

°C<br />

UR or UL<br />

Packaging No<br />

Type<br />

Features<br />

±V PN<br />

V<br />

±V P<br />

V<br />

Technology<br />

U C<br />

V<br />

V out<br />

I out<br />

@ V PN<br />

BW<br />

kHz<br />

X G<br />

T A<br />

=<br />

25 °C<br />

% @ V PN<br />

with max<br />

offset taken<br />

T A<br />

°C<br />

UR or UL<br />

Packaging No<br />

Type<br />

Connection<br />

primary<br />

Connection<br />

secondary<br />

10<br />

(10 to 1500 V)<br />

± 14<br />

(2100 V)<br />

C/L ± 15 25 mA Note c) 0.8 -40...+85 76<br />

LV 25-P/SP5<br />

note d)<br />

Isolation test<br />

2000 3000 Insulating digital technology ± 15…24 50 mA DC-14 (-3dB) 0.5 -40...+85 78 DVL 2000 2 x M5<br />

2000 3000 Insulating digital technology ± 15…24 50 mA DC-14 (-3dB) 0.5 -40...+85 87 DVL 2000/SP1 M5<br />

3 x M5 +<br />

Faston<br />

Burndy<br />

vertical<br />

2000 3000 Insulating digital technology ± 15…24 50 mA DC-14 (-3dB) 0.5 -40...+85 88 DVL 2000/SP5 cable cable<br />

V PN = 50 V ... 1500 V<br />

IDT<br />

2000 3000 Insulating digital technology ± 15…24 50 mA DC-14 (-3dB) 0.5 -40...+85 89 DVL 2000/SP6 M5 cable<br />

2000 3000 Insulating digital technology ± 15…24 50 mA DC-12 (3dB) 0.3 -40...+85 81 DV 2000 Cable Cable<br />

TTR<br />

±V PN<br />

V<br />

±V P<br />

V<br />

50 75<br />

125 188<br />

150 225<br />

Technology<br />

Insulating digital<br />

technology<br />

Insulating digital<br />

technology<br />

Insulating digital<br />

technology<br />

U C<br />

V<br />

V out<br />

I out<br />

@ V PN<br />

BW<br />

kHz<br />

X G<br />

T A<br />

=<br />

25 °C<br />

% @ V PN<br />

with max<br />

offset taken<br />

T A<br />

°C<br />

UR or UL<br />

Packaging No<br />

Type<br />

± 15…24 50 mA DC-14 (-3dB) 0.5 -40...+85 78 DVL 50 2 x M5 3 x M5 + Faston<br />

± 15…24 50 mA DC-14 (-3dB) 0.5 -40...+85 78 DVL 125 2 x M5 3 x M5 + Faston<br />

± 15…24 50 mA DC-14 (-3dB) 0.5 -40...+85 78 DVL 150 2 x M5 3 x M5 + Faston<br />

Connection<br />

primary<br />

Connection<br />

secondary<br />

<strong>voltage</strong>: 4.2 kV RMS<br />

55<br />

2000 3000 Insulating digital technology ± 15…24 50 mA DC-12 (3dB) 0.3 -40...+85 82 DV 2000/SP1 Cable M5 + Faston<br />

2000 3000 Insulating digital technology ± 15…24 50 mA DC-12 (3dB) 0.3 -40...+85 83 DV 2000/SP2 M5 M5<br />

2800 4200 Insulating digital technology ± 15…24 50 mA DC-12 (3dB) 0.3 -40...+85 90 DV 2800/SP1 M5 vertical<br />

Burndy<br />

vertical<br />

2800 4200 Insulating digital technology ± 15…24 50 mA DC-12 (3dB) 0.3 -40...+85 84 DV 2800/SP4 M5 M5<br />

3000 4500 Insulating digital technology ± 15…24 50 mA DC-12 (3dB) 0.35 -40...+85 84 DV 3000/SP1 M5 M5<br />

4000 6000 Insulating digital technology ± 15…24 50 mA DC-12 (3dB) 0.3 -40...+85 91 DV 4000/SP1 M5<br />

Burndy<br />

vertical<br />

4000 6000 Insulating digital technology ± 15…24 50 mA DC-12 (3dB) 0.3 -40...+85 90 DV 4000/SP2 M5 vertical<br />

Burndy<br />

vertical<br />

4200 6000 Insulating digital technology ± 15…24 7 V DC-12 (3dB) 0.3 -40...+85 92 DV 4200/SP1 M5 D-Sub<br />

TTR<br />

250 375<br />

500 750<br />

Insulating digital<br />

technology<br />

Insulating digital<br />

technology<br />

± 15…24 50 mA DC-14 (-3dB) 0.5 -40...+85 78 DVL 250 2 x M5 3 x M5 + Faston<br />

± 15…24 50 mA DC-14 (-3dB) 0.5 -40...+85 78 DVL 500 2 x M5 3 x M5 + Faston<br />

4200 6000 Insulating digital technology ± 15…24 50 mA DC-12 (3dB) 0.3 -40...+85 81 DV 4200/SP3 Cable Cable<br />

4200 6000 Insulating digital technology ± 15…24 50 mA DC-12 (3dB) 0.3 -40...+85 84 DV 4200/SP4 M5 M5<br />

4200 6000 Insulating digital technology ± 15…24 50 mA DC-12 (3dB) 0.3 -40...+85 93 DV 4200/SP5 M5 vertical D-Sub<br />

750 1125<br />

Insulating digital<br />

technology<br />

± 15…24 50 mA DC-14 (-3dB) 0.5 -40...+85 78 DVL 750 2 x M5 3 x M5 + Faston<br />

140 200 Fluxgate “C” ± 15<br />

10 V/200<br />

V<br />

DC-300 (-1dB) 0.2 @ V P<br />

-40...+85 80 CV 3-200 2 x M5 4 x M5<br />

750 1125<br />

Insulating digital<br />

technology<br />

± 15…24 50 mA DC-14 (-3dB) 0.5 -40...+85 86 DVL 750/SP2 M5 M5 insert<br />

350 500 Fluxgate “C” ± 15<br />

10 V/500<br />

V<br />

DC-300 (-1dB) 0.2 @ V P<br />

-40...+85 80 CV 3-500 2 x M5 4 x M5<br />

1000 1500<br />

1000 1500<br />

1000 1500<br />

1000 1500<br />

1000 1500<br />

Insulating digital<br />

technology<br />

Insulating digital<br />

technology<br />

Insulating digital<br />

technology<br />

Insulating digital<br />

technology<br />

Insulating digital<br />

technology<br />

± 15…24 50 mA DC-14 (-3dB) 0.5 -40...+85 78 DVL 1000 2 x M5 3 x M5 + Faston<br />

± 15…24 50 mA DC-14 (-3dB) 0.5 -40...+85 87 DVL 1000/SP1 M5 Burndy vertical<br />

± 15…24 50 mA DC-14 (-3dB) 0.5 -40...+85 86 DVL 1000/SP5 M5 M5 insert<br />

± 15…24 50 mA DC-14 (-3dB) 0.5 -40...+85 88 DVL 1000/SP7 cable cable<br />

± 15…24 50 mA DC-14 (-3dB) 0.5 -40...+85 89 DVL 1000/SP8 M5 cable<br />

700 1000 Fluxgate “C” ± 15<br />

840 1200 Fluxgate “C” ± 15<br />

1000 1500 Fluxgate “C” ± 15<br />

1400 2000 Fluxgate “C” ± 15<br />

10<br />

V/1000 V<br />

10<br />

V/1200 V<br />

10<br />

V/1500 V<br />

10<br />

V/2000 V<br />

DC-500<br />

(-1dB @ 50<br />

% V PN<br />

)<br />

DC-800<br />

(-1dB @ 40% V PN<br />

)<br />

DC-800<br />

(-1dB @ 33% V PN<br />

)<br />

DC-300<br />

(-1dB @ 25% V PN<br />

)<br />

0.2 @ V P<br />

-40...+85 80 CV 3-1000 2 x M5 4 x M5<br />

0.2 @ V P<br />

-40...+85 80 CV 3-1200 2 x M5 4 x M5<br />

0.2 @ V P<br />

-40...+85 80 CV 3-1500 2 x M5 4 x M5<br />

0.2 @ V P<br />

-40...+85 80 CV 3-2000 2 x M5 4 x M5<br />

1000 1500<br />

Insulating digital<br />

technology<br />

± 15…24 50 mA DC-12 (3dB) 0.3 -40...+85 81 DV 1000 Cable Cable<br />

78 86 87 88 89<br />

81<br />

82<br />

83<br />

84<br />

1200 1800<br />

Insulating digital<br />

technology<br />

± 15…24 50 mA DC-12 (3dB) 0.3 -40...+85 82 DV 1200/SP2 Cable M5 + Faston<br />

90<br />

91<br />

92<br />

93<br />

1500 2250<br />

Insulating digital<br />

technology<br />

± 15…24 50 mA DC-14 (-3dB) 0.5 -40...+85 78 DVL 1500 2 x M5 3 x M5 + Faston<br />

1500 2250<br />

Insulating digital<br />

technology<br />

± 15…24 50 mA DC-14 (-3dB) 0.5 -40...+85 87 DVL 1500/SP1 M5 Burndy vertical<br />

1500 2250<br />

Insulating digital<br />

technology<br />

± 15…24 50 mA DC-14 (-3dB) 0.5 -40...+85 86 DVL 1500/SP2 M5 M5 insert<br />

1500 2250<br />

1500 2250<br />

Insulating digital<br />

technology<br />

Insulating digital<br />

technology<br />

± 15…24 50 mA DC-14 (-3dB) 0.5 -40...+85 88 DVL 1500/SP5 cable cable<br />

± 15…24 50 mA DC-14 (-3dB) 0.5 -40...+85 89 DVL 1500/SP6 M5 cable<br />

80<br />

1500 2250<br />

Insulating digital<br />

technology<br />

± 15…24 50 mA DC-12 (3dB) 0.3 -40...+85 82 DV 1500 Cable M5 + Faston<br />

Notes:<br />

c) See response time in the individual data sheet<br />

d) The primary and secondary connections of this transducer are done on PCB<br />

76<br />

54<br />

Dedicated data sheets are the only recognized reference documents for the given performances and data - Data sheets: www.lem.com


TTR - On-Board<br />

Energy Measurement for<br />

On-Board Applications: EM4T II<br />

TTR - On-Board<br />

Picture 1 :<br />

European rail networks<br />

TTR<br />

With the liberalization and/or privatization of some of the major<br />

rail networks, the opportunity for traction units to cross national<br />

boundaries now exists, using both the installed base of rail and<br />

planned rail networks.<br />

This gave train designers the daunting task to develop multisystem<br />

locomotives to be used on the different existing<br />

networks.<br />

These prime movers would be needed to operate on the<br />

different supply networks of bordering countries along the route<br />

without requiring an equipment exchange at the regional or<br />

network supply border.<br />

Today, it is therefore technically possible to transfer people or<br />

goods throughout Europe, from Norway to Sicily for example,<br />

without any physical exchange of the locomotive (Picture 1).<br />

Changes in the Energy Markets in the form of deregulation and<br />

increased competition for large user contracts brought potential<br />

benefi ts for those willing to negotiate for their electrical traction<br />

supply requirements.<br />

This negotiation however requires greater knowledge and<br />

understanding of the load profi le of bulk supply points in one of<br />

the harshest electrical environments – the traction supply.<br />

With the energy meter from LEM, the data for the precise<br />

calculation of both supplied and regenerated energy for billing<br />

purposes can be accomplished on the train, independently of<br />

the energy supplier.<br />

The second generation of universal energy meters for traction<br />

especially designed for on-board applications<br />

With the EM4T II energy meter, LEM introduced the<br />

second generation of universal energy meters for<br />

electric traction units with the authorization for billings.<br />

Thanks to the advanced capability (such as input channels<br />

to connect any actual available <strong>current</strong> and <strong>voltage</strong><br />

transducer or transformer) of the EM4T II, it is used both<br />

in new multi-system locomotives and for retrofitting to<br />

all types of electrical rail vehicles already in operation.<br />

Recently, the new EN 50463 standards define characteristics of<br />

energy measurement function (EMF) as well as <strong>transducers</strong> for<br />

<strong>current</strong> and <strong>voltage</strong> DC or AC measurement used for EMF. This<br />

evolution led LEM to upgrade EM4T to the latest model: EM4T II.<br />

EM4T II - the load profi le provider<br />

EM4T II processes signals from the transformer and electronic<br />

converter systems for <strong>current</strong> and <strong>voltage</strong> to calculate energy<br />

values which are stored as load profile information.<br />

In this load profile (set and stored in intervals of 1, 2, 3, 5, 10<br />

or 15 minutes period length according to the user), the primary<br />

energy (delta) values are recorded together with data such as:<br />

• Date and time stamp<br />

• Events<br />

• Train identification numbers<br />

• Absolute energy values for consumption and<br />

regeneration of active and reactive energy<br />

• Frequency of the network (16.7 Hz, 50 Hz, 60 Hz or DC)<br />

• Additional “user” load profile like the <strong>voltage</strong> with<br />

a shorter time interval (feature coming in a second<br />

design step)<br />

• Position of the train at the time the load profile was<br />

stored and/or the event arose<br />

• Further functions, such as <strong>voltage</strong> detection can be set.<br />

The measured energy information includes separately the<br />

consumed and regenerated active and reactive energy and is<br />

stored in the load profile memory (at 5 minutes period length) for<br />

at least 300 days.<br />

The input variables (<strong>current</strong> and <strong>voltage</strong>) are connected to the<br />

measuring circuits of the EM4T II via differential inputs (Picture<br />

2 and 3), designed for connection of all <strong>current</strong> and <strong>voltage</strong><br />

<strong>transducers</strong>/transformers <strong>current</strong>ly available on the market.<br />

Four input channels are proposed for metering of both DC and<br />

AC signals of any existing traction network (see chart 1).<br />

The EM4T II is suitable for usage in multi-system vehicles.<br />

Supply systems 25 kV 50/60 Hz and 15 kV 16.7 Hz, or either<br />

600 V DC, 750 V DC, 1.5 kV DC or 3 kV DC are covered. A<br />

system change is detected by the energy meter and stored in<br />

the load profile.<br />

The requirements for <strong>current</strong> measurement at this level can be<br />

diverse.<br />

A large aperture transducer is appropriate when the primary<br />

conductor is highly isolated to support the high level of <strong>voltage</strong><br />

(15 to 25 kV AC as nominal level): LEM’s ITC Transducer Series<br />

is of this category.<br />

PORTUGAL<br />

CP<br />

IRELAND<br />

IE<br />

SPAIN<br />

RENFE<br />

BR<br />

UNITED KINGDOM<br />

FRANCE<br />

DENMARK<br />

NETHERLANDS<br />

SNCF<br />

NS<br />

BELGIUM<br />

SNCB<br />

SWITZERLAND<br />

SBB/CFF/FFS<br />

MONACO<br />

NORWAY<br />

NSB<br />

GERMANY<br />

DB AG<br />

FS<br />

ITALY<br />

SWEDEN<br />

SJ<br />

CD<br />

AUSTRIA<br />

OBB<br />

SLOVENIA<br />

SZ<br />

CROATIA<br />

HZ<br />

POLAND<br />

PKP<br />

ZSR<br />

LITHUANIA<br />

SLOVAKIA<br />

HUNGARY<br />

MAV<br />

BOSNIA<br />

AND HERZEGOVINA<br />

MONTENEGRO<br />

FINLAND<br />

VR<br />

ZBH JZ<br />

ESTONIA<br />

LATVIA<br />

KOSOVO<br />

ALBANIA<br />

EVR<br />

LDZ<br />

MACEDONIA<br />

OSE<br />

GREECE<br />

BELARUS<br />

BZD<br />

ROMANIA<br />

SNCFR<br />

BULGARIA<br />

BDZ<br />

UKRAINE<br />

RUSSIAN FEDERATION<br />

RZD<br />

FAP/KHP<br />

UZ<br />

EM4T II<br />

Energy meter for electrical<br />

traction unit railways<br />

• Data recording according to EN 50463-x<br />

• Accuracy 0.5R according to EN 50463-2<br />

• Multi-System capability for DC, 16.7 Hz, 50 Hz, 60 Hz<br />

• Supply systems according to EN50163: 25 kV 50 Hz,<br />

15 kV 16.7 Hz, 600 V DC, 750 VDC, 1.5 kV DC, 3 kV DC<br />

• Measurement of consumed and regenerated active<br />

and reactive energy<br />

• For DC optionally with up to 3 DC <strong>current</strong> channels<br />

• Input for GPS receiver<br />

• Load profile recording including location data<br />

• RS-type interface for data communication<br />

• Ethernet-interface (Available in the next version)<br />

not electrifi ed<br />

electrifi ed (DC) tracks<br />

1.5 kV DC<br />

3 kV DC<br />

15 kV 16.7 Hz<br />

25 kV 50 Hz<br />

3 kV DC / 25 kV 50Hz<br />

Picture 2: EM4T II<br />

Siemens Train<br />

TTR<br />

EM4T II is a single energy meter complying to all the<br />

requirements of EN 50463-x & EN 50155 standards for metering<br />

and On-Board use, and thus satisfies the requirements of EC<br />

Decision 2011/291/EC (TSI “Locomotives and passenger rolling<br />

stock”).<br />

Shunts can also be used at this level associated to LEM DI<br />

models providing the required insulation and the class 1R<br />

accuracy (when used with a class 0.2R shunt).<br />

Version<br />

AC<br />

ACDC<br />

DC<br />

Channel 1<br />

AC-<strong>voltage</strong><br />

AC-<strong>voltage</strong><br />

DC-<strong>voltage</strong><br />

Channel 2<br />

AC-<strong>current</strong><br />

AC-<strong>current</strong><br />

DC-<strong>current</strong><br />

Channel 3<br />

DC-<strong>voltage</strong><br />

Channel 4<br />

DC-<strong>current</strong><br />

DCDC<br />

DC-<strong>voltage</strong><br />

DC-<strong>current</strong><br />

DC-<strong>current</strong><br />

DCDCDC<br />

DC-<strong>voltage</strong><br />

DC-<strong>current</strong><br />

DC-<strong>current</strong><br />

DC-<strong>current</strong><br />

Chart 1: EM4T II possible confi gurations for inputs<br />

56 57


TTR - On-Board<br />

TTR - On-Board<br />

TTR<br />

For the DC networks, the transducer’s inherent isolation<br />

properties are adequate.<br />

Analog to Digital Sigma-Delta conversion processors suppress<br />

high frequency disturbances in all channels, enhancing even<br />

further the capacity to handle the often rapid supply transitions<br />

within traction supplies.<br />

The microprocessor reads the sampled values and calculates<br />

the real energy in adjustable intervals (standard value = 5 min).<br />

The results are then saved in flash memory (a special variant of<br />

an EEPROM).<br />

The signals from 2 AC and 2 DC input channels (each for U-<br />

and I- input) are used to calculate the energy values. The highaccuracy<br />

measurement of the energy value is guaranteed by the<br />

digitally sampled signal converter implemented, providing the<br />

highest level of temperature and long-term stability.<br />

Optionally, the EM4T II for DC measurement is available in a<br />

version with a single <strong>voltage</strong> input and up to three <strong>current</strong> inputs<br />

to measure the energy consumption for vehicles with multiple<br />

power supply points.<br />

The EM4T II has a dedicated RS232 interface input for<br />

receiving serial GPS-data messages according to NMEA 0183,<br />

including the location data of the energy consumption point.<br />

It synchronizes also the internal clock of the meter using the<br />

obtained time information.<br />

A log book in full conformity with EN 50463-3 is stored in the<br />

EM4T II. This log book information contains e.g. loss and gain<br />

of the operating <strong>voltage</strong>, power up/power down events of the<br />

supply <strong>voltage</strong>, clock synchronization, and the modification of<br />

parameters influencing the energy calculating.<br />

Identification data of the vehicle or train are also stored and can<br />

be retrieved separately. The self-luminous display of the EM4T II<br />

shows cyclically all relevant energy and status information without<br />

required operations of a mechanical or optical button.<br />

All measured and stored data can be read out via the RS-type<br />

interface (via modem or local).<br />

The interface versions RS232, RS422 or RS485 are available.<br />

The applied data communications protocol is IEC 62056-21<br />

and is therefore easily adaptable by all common remote reading<br />

systems. In the next version, the EM4T II will also provide an<br />

Ethernet-interface.<br />

The supply <strong>voltage</strong> is selectable between 24 V and 110<br />

V. Optionally, the EM4T II offers a power supply of 12 V for a<br />

communication unit (modem).<br />

The operating conditions (considering EMC, temperature,<br />

vibration, etc.) meet the special requirements for traction use,<br />

including EN 50155, EN 50121-3-2, EN 50124-1, and EN 61373.<br />

The compact and fire-retardant enclosure provides protection<br />

against the ingress of moisture or foreign objects according IP<br />

65.<br />

EM4T II<br />

DV 4200/SP4<br />

ITC 4000-S<br />

ITC 2000-S<br />

Shunt<br />

DI<br />

Part of a high <strong>voltage</strong> frame of a multi-system locomotive with the positions needed for <strong>current</strong> & <strong>voltage</strong> measurement<br />

TTR<br />

Battery Supply<br />

Over-<br />

Voltage<br />

Protection<br />

Supply Buffer<br />

Internal Supply<br />

Modem<br />

(GSM / GPRS / GSM-R)<br />

RESET<br />

ISOLATION<br />

ISOLATION<br />

ADC ADC ADC ADC<br />

Sensor<br />

Channel<br />

#1<br />

Local<br />

Interface<br />

μ-Processor<br />

Sensor<br />

Channel<br />

#2<br />

Display<br />

ISOLATION<br />

Sensor<br />

Channel<br />

#3<br />

GPS<br />

Receiver<br />

ISOLATION<br />

Sensor<br />

Channel<br />

#4<br />

Transducer Transducer Transducer Transducer<br />

Picture 3: Block diagram of the LEM energy meter<br />

MEMORY<br />

CLOCK<br />

(Buffer Battery)<br />

Standards & Regulations<br />

• EN 50463-x Draft:<br />

(2012): Railway application<br />

Energy measurement on board trains<br />

DC measurement Class 2<br />

AC measurement Class 1.5<br />

• EN 50155 Railway applications<br />

(2007): Electronic equipment used<br />

on rolling stock<br />

• EN 50121-3-2 Railway applications<br />

(2006): Electromagnetic compatibility<br />

Part 3-2: Rolling stock - Apparatus<br />

• EN 61373 Railway applications<br />

(2010): Rolling stock equipment<br />

Shock and vibration tests<br />

• EN 50124-1 Railway applications<br />

(2001): Insulation coordination<br />

Part 1: Basic requirements<br />

• IEC 62056-21 Electricity metering<br />

(2002): Data exchange for meter reading,<br />

tariff and load control<br />

Part 21: Direct local data exchange<br />

DI 30...200 mV<br />

(Shunt isolator)<br />

Class 1R<br />

High galvanic isolation<br />

DV-VOLTAGE FAMILY<br />

1200 to 4200 V RMS<br />

One unique compact package<br />

Class 0.75R accuracy<br />

Low thermal drift<br />

ITC 2000...4000-S FAMILY<br />

Better than Class 0.5R<br />

High temperature stability<br />

58 59


TTR - Selection Guide<br />

TTR - Selection Guide<br />

46-47<br />

45-46-47<br />

44-45<br />

130-400 A<br />

44<br />

44<br />

45<br />

46<br />

47<br />

46<br />

TTR<br />

46-47<br />

46-47<br />

1000-3000 A<br />

TTR<br />

52-53<br />

50<br />

51<br />

0.1<br />

44<br />

0.4<br />

52<br />

54<br />

55<br />

140<br />

54-55<br />

54-55<br />

57<br />

50<br />

LTC model in circuit breaker. Picture provided by courtesy of Sécheron.<br />

LF 205 models in auxiliary inverter. Picture provided by courtesy of SMA.<br />

LV 25-P/SP5 model in auxiliary inverter.<br />

LAC 300-S/SP1 model in auxiliary inverter.<br />

60 61


I PN<br />

= 12.5 A ... 4000 A<br />

I PN<br />

I PN<br />

A DC<br />

A RMS<br />

I P<br />

A<br />

Technology<br />

U C<br />

V<br />

V out<br />

I out<br />

@ I PN<br />

(DC)<br />

BW<br />

kHz<br />

Note j)<br />

E L<br />

Linearity<br />

(ppm)<br />

Note i) k)<br />

I OE<br />

V OE<br />

Offset<br />

(ppm)<br />

Note k) l)<br />

HIP<br />

Noise (RMS)<br />

(ppm)<br />

(DC-100Hz)<br />

Note k)<br />

Noise<br />

(RMS)<br />

(ppm)<br />

(DC-<br />

50kHz)<br />

Note k)<br />

TCI OE<br />

TCV OE<br />

(ppm/K)<br />

Note k)<br />

T A<br />

°C<br />

PCB<br />

Mounting<br />

On-board<br />

Panel<br />

Measuring<br />

head +<br />

19” rack<br />

electronic<br />

Busbar Aperture<br />

Diameter (mm)<br />

UR or UL<br />

Packaging No<br />

Type<br />

HIP<br />

Fluxgate<br />

Features<br />

12.5 8.8 ± 12.5 Fluxgate IT ± 15 50 mA DC-500 (3dB) 4 500 0.5<br />

10<br />

(DC-100kHz)<br />

2 10...+45 Integrated 94 ITN 12-P<br />

Metal housing for<br />

high immunity against<br />

external infl uence<br />

60 42 ± 60 Fluxgate IT ± 15 100 mA DC-800 (3dB) 20 250 1 15 2.5 10...+50 26 95 IT 60-S<br />

HIP<br />

Stand-alone DC/AC Current Transducers<br />

200 141 ± 200 Fluxgate IT ± 15 200 mA DC-500 (3dB) 3 80 1 15 2 10...+50 26 95 IT 200-S<br />

300 300 ± 450 Fluxgate IT ± 15 150 mA DC-100 (-3dB) 10 666 N/A N/A 6.66 -40...+85 21.5 96 ITB 300-S<br />

400 282 ± 400 Fluxgate IT ± 15 200 mA DC-500 (3dB) 3 40 0.5 8 1 10...+50 26 95 IT 400-S<br />

400 400 ± 900 Fluxgate IT ± 15<br />

266.66<br />

mA<br />

DC-200 m) (3dB) 1 10<br />

0.017<br />

(0.125Hz-1kHz)<br />

600 424 ± 600 Fluxgate IT ± 15 400 mA DC-300 (3dB) 1.5 15 0.3<br />

0.006<br />

(1kHz-30kHz)<br />

15<br />

(DC-100kHz)<br />

0.3 10...+50 <br />

Integrated<br />

busbar<br />

19 mm<br />

diameter<br />

97 ITL 900-T<br />

0.5 10...+50 30 98 ITN 600-S<br />

700 495 ± 700 Fluxgate IT ± 15 400 mA DC-100 (3dB) 3 50 0.5 6 0.5 10...+50 30 99 IT 700-S<br />

700 495 ± 700 Fluxgate IT ± 15 400 mA DC-100 (3dB) 3 50 1 16 0.5 10...+50 30 100 IT 700-SPR<br />

700 495 ± 700 Fluxgate IT ± 15 10 V DC-100 (3dB) 30 60 2 10 4 10...+50 30 99 IT 700-SB<br />

900 636 ± 900 Fluxgate IT ± 15 600 mA DC-300 (3dB) 1 10 0.2 10 0.3 10...+50 30 99 ITN 900-S<br />

Programmable from<br />

80 A in step of 10 A<br />

1000 707 ± 1000 Fluxgate IT ± 15 1 A DC-500 (3dB) 3 50 N/A 6 0.5 10...+50 30 101 IT 1000-S/SP1 High bandwidth<br />

4000 4000 ± 12000 Fluxgate IT ± 24 1.6 A DC-50 n) (1dB) 100 62.5 125 (0.1Hz-10kHz)<br />

125<br />

(0.1Hz-10kHz)<br />

1.38 -40...+70 268 74 ITL 4000-S<br />

HIP<br />

74<br />

94 100 99 95 96 98<br />

101<br />

97<br />

Notes:<br />

i) Linearity measured at DC<br />

j) Bandwidth is measured under small signal conditions - amplitude of 0.5% I PN<br />

(DC)<br />

k) All ppm figures refer to V out<br />

or I out<br />

@ I PN<br />

(DC) except for ITL 900-T where it refers to I OUT<br />

= 600 mA<br />

l) Electrical offset <strong>current</strong> + self magnetization + effect of earth magnetic field @ T A<br />

= +25 °C<br />

m) Small signal 5% of I PN<br />

(DC), 32 A RMS<br />

n) Small signal 40 A RMS<br />

o) Bandwidth is measured under small signal conditions - amplitude of 1% I PN<br />

(DC)<br />

N/A : Not Available<br />

62<br />

Dedicated data sheets are the only recognized reference documents for the given performances and data - Data sheets: www.lem.com<br />

63


I PN<br />

= 40 A ... 24000 A<br />

HIP<br />

HIP<br />

Fluxgate<br />

I PN<br />

A DC<br />

I PN<br />

A RMS<br />

I P<br />

A<br />

Technology<br />

U C<br />

V<br />

V out<br />

I out<br />

@ I PN<br />

(DC)<br />

BW<br />

kHz<br />

Note j)<br />

E L<br />

Linearity<br />

(ppm)<br />

Note i) k)<br />

I OE<br />

V OE<br />

Offset<br />

(ppm)<br />

Note k) l)<br />

Noise (RMS)<br />

(ppm)<br />

(DC-100Hz)<br />

Note k)<br />

Noise (RMS)<br />

(ppm)<br />

(DC-50kHz)<br />

Note k)<br />

TCI OE<br />

TCV OE<br />

(ppm/K)<br />

Note k)<br />

T A<br />

°C<br />

PCB<br />

Mounting<br />

On-board<br />

Panel<br />

Measuring<br />

head +<br />

19” rack<br />

electronic<br />

Busbar Aperture<br />

Diameter (mm)<br />

UR or UL<br />

Packaging No<br />

Type<br />

Features<br />

600 424 ± 600 Fluxgate IT 100-240 VAC - 50/60 Hz 1 A DC-500 o) (3dB) 1 2 11 (DC-10kHz) 28 (DC-100kHz) 0.1<br />

0...+55 Head<br />

+10…+40 Elec.<br />

25.4 102 + 103 ITZ 600-SPR<br />

Programmable by steps of<br />

20 A from 40 A to 620 A<br />

600 424 ± 600 Fluxgate IT 100-240 VAC - 50/60 Hz 10 V DC-300 o) (3dB) 10 3 8 (DC-10kHz) 60 (DC-100kHz) 0.3<br />

0...+55 Head<br />

+10…+40 Elec.<br />

25.4 102 + 103 ITZ 600-SBPR<br />

Programmable by steps of<br />

20 A from 40 A to 620 A<br />

Rack System DC/AC Current Transducers<br />

2000 1414 ± 2000 Fluxgate IT 100-240 VAC - 50/60 Hz 2 A DC-300 o) (3dB) 2 2 3 (DC-10kHz) 27 (DC-100kHz) 0.1<br />

2000 1414 ± 2000 Fluxgate IT 100-240 VAC - 50/60 Hz 10 V DC-300 o) (3dB) 11 3 3 (DC-10kHz) 60 (DC-100kHz) 0.3<br />

2000 1414 ± 2000 Fluxgate IT 100-240 VAC - 50/60 Hz 1 A DC-80 o) (3dB) 2 2 7 (DC-10kHz) 42 (DC-100kHz) 0.1<br />

2000 1414 ± 2000 Fluxgate IT 100-240 VAC - 50/60 Hz 10 V DC-80 o) (3dB) 11 3 2 (DC-10kHz) 60 (DC-100kHz) 0.3<br />

5000 3535 ± 5000 Fluxgate IT 100-240 VAC - 50/60 Hz 2 A DC-80 o) (3dB) 3 2 2.5 (DC-10kHz) 20 (DC-100kHz) 0.1<br />

5000 3535 ± 5000 Fluxgate IT 100-240 VAC - 50/60 Hz 10 V DC-80 o) (3dB) 11 3 2.5 (DC-10kHz) 60 (DC-100kHz) 0.3<br />

10000 7070 ± 10000 Fluxgate IT 100-240 VAC - 50/60 Hz 2 A DC-20 o) (3dB) 5 2 8 (DC-10kHz) 20 (DC-100kHz) 0.1<br />

10000 7070 ± 10000 Fluxgate IT 100-240 VAC - 50/60 Hz 10 V DC-20 o) (3dB) 12 3 8 (DC-10kHz) 60 (DC-100kHz) 0.3<br />

16000 11314 ± 16000 Fluxgate IT 100-240 VAC - 50/60 Hz 2 A DC-3 o) (3dB) 6 2 8 (DC-10kHz) 20 (DC-100kHz) 0.1<br />

0...+55 Head<br />

+10…+40 Elec.<br />

0...+55 Head<br />

+10…+40 Elec.<br />

0...+55 Head<br />

+10…+40 Elec.<br />

0...+55 Head<br />

+10…+40 Elec.<br />

0...+55 Head<br />

+10…+40 Elec.<br />

0...+55 Head<br />

+10…+40 Elec.<br />

0...+55 Head<br />

+10…+40 Elec.<br />

0...+55 Head<br />

+10…+40 Elec.<br />

0...+55 Head<br />

+10…+40 Elec.<br />

50 102 + 104 IT 2000-S<br />

50 102 + 104 IT 2000-SB<br />

50 102 + 104 IT 2000-SPR<br />

50 102 + 104 IT 2000-SBPR<br />

140.3 102 + 105 IT 5000-S<br />

140.3 102 + 105 IT 5000-SB<br />

100 102 + 106 IT 10000-S<br />

100 102 + 106 IT 10000-SB<br />

150.3 102 + 107 IT 16000-S<br />

Programmable by<br />

steps of 125 A from<br />

125 A to 2000 A<br />

Programmable by<br />

steps of 125 A from<br />

125 A to 2000 A<br />

16000 11314 ± 16000 Fluxgate IT 100-240 VAC - 50/60 Hz 10 V DC-3 o) (3dB) 12 3 8 (DC-10kHz) 60 (DC-100kHz) 0.3<br />

0...+55 Head<br />

+10…+40 Elec.<br />

150.3 102 + 107 IT 16000-SB<br />

HIP<br />

24000 16970 ± 24000 Fluxgate IT 100-240 VAC - 50/60 Hz 3 A DC-2 o) (3dB) 6 2 8 (DC-10kHz) 20 (DC-100kHz) 0.1<br />

0...+55 Head<br />

+10…+40 Elec.<br />

150.3 102 + 107 IT 24000-S<br />

HIP<br />

107<br />

105 106<br />

102<br />

104 103<br />

Notes:<br />

i) Linearity measured at DC<br />

j) Bandwidth is measured under small signal conditions - amplitude of 0.5% I PN<br />

(DC)<br />

k) All ppm figures refer to V out<br />

or I out<br />

@ I PN<br />

(DC) except for ITL 900-T where it refers to I OUT<br />

= 600 mA<br />

l) Electrical offset <strong>current</strong> + self magnetization + effect of earth magnetic field @ T A<br />

= +25 °C<br />

m) Small signal 5% of I PN<br />

(DC), 32 A RMS<br />

n) Small signal 40 A RMS<br />

o) Bandwidth is measured under small signal conditions - amplitude of 1% I PN<br />

(DC)<br />

64 Dedicated data sheets are the only recognized reference documents for the given performances and data - Data sheets: www.lem.com<br />

65


AUTOMOTIVE<br />

Automotive Applications Overview<br />

In the automotive market, LEM works with all the major car<br />

manufacturers and Tier-1 suppliers in the world, and supplies<br />

galvanically-isolated electronic <strong>transducers</strong> that measure electrical<br />

parameters in battery-management and motor-control applications.<br />

The ever more stringent requirements for energy efficiency and<br />

3<br />

reduced CO2 emissions lead car manufacturers to increasingly<br />

depend on on-board electrical components. From electric powersteering<br />

and stop-start technologies to on-board navigation and<br />

infotainment systems, these components put an additional load on<br />

the electrical circuits and particularly the battery, making it essential<br />

to control the energy generated and consumed by the various onboard<br />

systems. In collaboration with its customers and with the help<br />

of powerful simulation techniques, LEM uses the most-appropriate<br />

technology (from Hall-cell to fluxgate) to address the specific need<br />

HC2F model in inverter.<br />

C<br />

of measuring the <strong>current</strong>s (coulombs) entering and leaving the car’s<br />

battery and/or the alternator. This allows an intelligent management<br />

1<br />

of available power that leads to the increased efficiency of today’s<br />

D<br />

AUTOMOTIVE<br />

internal-combustion engines. More importantly still, the hybrid- and<br />

electric-vehicles entering the market today depend on accurate<br />

measurement of battery-pack <strong>current</strong>s to determine the available<br />

driving range and recharging strategy. LEM has the technology.<br />

Not only must battery <strong>current</strong>s be accurately measured in hybrid- and<br />

electric-vehicles, but the electric motors driving the wheels of this<br />

new generation of automobiles also need to be precisely controlled<br />

to allow smooth operation. Electric motor phase-<strong>current</strong> sensing has<br />

been LEM’s core competency since its beginning and remains today<br />

A<br />

A<br />

4<br />

3<br />

5<br />

A<br />

6<br />

7<br />

2<br />

B<br />

a major application for its technology. LEM has a dedicated product<br />

range for measuring phase-<strong>current</strong>s in motors and DC-DC converters<br />

essential to all hybrid- and electric-vehicles.<br />

LEM is a key player in the new generation of automobiles, using<br />

its know-how acquired over 40 years to develop the specific<br />

technologies to measure battery and motor-phase <strong>current</strong>s that allow<br />

the car <strong>industry</strong> to meet the ever increasing requirements in energy<br />

efficiency. The following pages give you an introduction into LEM’s<br />

technology for automotive applications.<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

High-<strong>voltage</strong> battery<br />

Vehicle control unit<br />

Charger<br />

Motor controller<br />

Electric motor and transaxle<br />

DC/DC converter<br />

Electric power steering<br />

A<br />

B<br />

C<br />

D<br />

HAH1DR - HAH3 - HC2 - HC5 - HC6 - CKSR<br />

DHAB - HAH1BV - CAB<br />

CDT<br />

FHS (dashboard)<br />

AUTOMOTIVE<br />

66<br />

67


Automotive Selection Guide<br />

Automotive Selection Guide<br />

PRODUCT NAME<br />

HAB<br />

MAXIMUM PEAK<br />

MEASUREMENT<br />

RANGE (A)<br />

± 400<br />

OUTPUT<br />

SIGNAL<br />

V / PWM<br />

TYPICAL<br />

ACCURACY<br />

±2%<br />

APPLICATION<br />

Electric load<br />

(wipers, lights, etc,...)<br />

Alternator<br />

Monitoring<br />

= Current transducer<br />

HABT<br />

HAG<br />

DHAB<br />

CAB<br />

± 100<br />

± 300<br />

± 1000<br />

± 400<br />

V<br />

V / PWM<br />

V<br />

CAN / LIN*<br />

±2%<br />

±2%<br />

±2%<br />

±0.1%<br />

with temperature sensing<br />

Battery<br />

Monitoring<br />

Battery<br />

Current signal<br />

Temperature<br />

Current signal<br />

Command<br />

Engine<br />

ECU<br />

Alternator<br />

Battery Monitoring<br />

HAH1 BV<br />

± 900<br />

V<br />

±2%<br />

HAH1 DR<br />

HC2F/HC2H<br />

HC6F/HC6H<br />

HC5FW<br />

± 900<br />

± 250<br />

± 800<br />

± 900<br />

V<br />

V<br />

V<br />

V<br />

±2%<br />

±3%<br />

±3%<br />

±1%<br />

Motor<br />

Control<br />

AC<br />

Compressor<br />

Internal Combustion<br />

Engine<br />

Generator<br />

MG1<br />

Gearbox<br />

DC/DC<br />

Converter<br />

DC/DC<br />

MG2<br />

Power<br />

Battery<br />

Electric<br />

Traction<br />

Engine<br />

ECU<br />

Fast charger<br />

= Current transducer<br />

Motor Control<br />

AUTOMOTIVE<br />

HC20<br />

± 2000<br />

V ±2%<br />

HAH3<br />

± 900<br />

V ±1%<br />

HAM<br />

± 250<br />

V ±1%<br />

CKSR ± 75**<br />

V ±1%<br />

FHS40-P<br />

± 100<br />

V ±5%<br />

CDT 0.1 A V ±1mA<br />

***<br />

3 phase<br />

measurement<br />

very high<br />

frequency<br />

bandwidth<br />

Threshold<br />

Detection<br />

Battery<br />

Fuse Box (smart fuse) / Junction Box<br />

CDT<br />

= Current transducer<br />

Charger Battery Inverter M<br />

mA<br />

Leakage Current<br />

Current Detection<br />

AUTOMOTIVE<br />

- Operating temperature for all products: -40°C to 125°C<br />

- Supply Voltage for all products: 5V, Ratiometric<br />

* Supply Voltage: 12V<br />

** Operating temperature: -40°C to 105°C<br />

68 - Customization of standard products possible. Contact us. *** Guaranteed error for leakage <strong>current</strong> detection<br />

69<br />

Battery<br />

Monitoring<br />

Alternator<br />

Monitoring<br />

DC/DC<br />

Converter<br />

Inverter<br />

Drive<br />

Motor<br />

Control<br />

Charger<br />

Threshold<br />

Detection<br />

Leakage<br />

Current


LEM’s Quality & Standards<br />

LEM’s Quality & Standards<br />

QUALITY<br />

LEM is dedicated to deliver products meeting the highest<br />

quality standards.<br />

These levels of quality may differ according to the application<br />

as well as the necessary standards to comply with.<br />

This quality has to be reached, maintained and constantly<br />

improved for both our products and services. The different<br />

LEM design and production centers around the world are<br />

ISO/TS 16949, ISO 9001 and/or ISO 14001 certified.<br />

LEM ISO/TS 16949: 2009<br />

SWITZERLAND ISO 14001: 2004<br />

ISO 9001: 2008<br />

IRIS: 2009<br />

LEM electronics ISO 9001: 2008<br />

(CHINA) Co, Ltd ISO/TS 16949: 2009<br />

ISO 14001: 2004<br />

IRIS: 2009<br />

LEM Japan ISO 9001: 2008<br />

ISO 14001: 2004<br />

TVELEM ISO 9001: 2008<br />

(RUSSIA)<br />

Several quality tools have been implemented at LEM to<br />

assess and analyze its performances. LEM utilizes this<br />

information to take the necessary corrective actions to remain<br />

a responsive player in the market.<br />

The most representative are:<br />

• DPT FMEA (Design, Process & Tool Failure Mode Effect<br />

Analysis) tool used preventively to:<br />

o identify the risks and the root causes related to the<br />

product, the process or the machinery<br />

o set up the corrective actions<br />

• Control Plan: Description of checks and monitoring actions<br />

executed along the production process<br />

• Cpk – R&R (Capability for Processes & Measurement<br />

Systems):<br />

o Cpk: Statistical tool used to evaluate the ability of a<br />

production procedure to maintain the accuracy within<br />

a specified tolerance<br />

o R&R: Repeatability and Reproducibility: Tool to monitor<br />

the accuracy of a measurement device within a predetermined<br />

tolerance<br />

• QOS – 8D (Quality Operating System – Eight Disciplines):<br />

o 8D: Problem solving process used to identify and<br />

eliminate the recurrence of quality issues<br />

o QOS: System used to solve problems<br />

• IPQ (Interactive Purchase Questionnaire): Tool aimed at<br />

involving the supplier in the quality of the purchased parts<br />

and spare parts.<br />

In addition to these quality programs, and since 2002,<br />

LEM embraces Six Sigma as its methodology in pursuit<br />

of business excellence. The main goal is to create an<br />

environment in which anything less than Six Sigma quality is<br />

unacceptable.<br />

Key Six Sigma Statistics<br />

Company<br />

Status<br />

Non<br />

Competitive<br />

Industry<br />

Average<br />

World Class<br />

Sigma<br />

Level<br />

2<br />

3<br />

4<br />

5<br />

6<br />

Defect<br />

Free<br />

65%<br />

93%<br />

99.4%<br />

99.976%<br />

99.9997%<br />

Source: Six Sigma Academy, Cambridge Management Consulting<br />

Defects Per<br />

Million<br />

308,537<br />

66,807<br />

6,210<br />

233<br />

3.4<br />

LEM’s Standards<br />

LEM <strong>transducers</strong> for Industry and traction are designed and<br />

tested according to recognized worldwide standards.<br />

CE marking is a guarantee that the product<br />

complies with the European EMC directive<br />

2004/108/EEC and low <strong>voltage</strong> directive and<br />

therefore warrants the electromagnetic compatibility of the<br />

<strong>transducers</strong>. Traction <strong>transducers</strong> comply to the EN 50121-3-<br />

2 standard (Railway EMC standard).<br />

UL is used as a reference to define the flammability<br />

of the materials used for LEM products (UL94V0)<br />

as well as the NFF 16101 and 16102 standards fot<br />

the fire/smoke materials classification when <strong>transducers</strong><br />

dedicated for traction applications.<br />

LEM is <strong>current</strong>ly UL recognized for key products. You can<br />

consult the UL website to get the updated list of recognized<br />

models at www.UL.com.<br />

The EN 50178 standard dedicated to “Electronic Equipment<br />

for use in power installations” in industrial applications is<br />

our standard of reference for electrical, environmental and<br />

mechanical parameters.<br />

It guarantees the overall performances of our products in<br />

industrial environments.<br />

All of the LEM Industry products are designed according<br />

to the EN 50178 standard except if dedicated to railway<br />

applications.<br />

In that case, the EN 50155 standard dedicated to “Electronic<br />

Equipment used on Rolling stock” in railway applications is<br />

our standard of reference for electrical, environmental and<br />

mechanical parameters.<br />

It guarantees then the overall performances of our products in<br />

railway environments.<br />

All of the LEM traction products are designed according to<br />

the EN 50155 standard.<br />

The individual data sheets precisely specify the applicable<br />

standards, approvals and recognitions for individual products.<br />

The EN 50178 standard is also used as reference to design<br />

the creepage and clearance distances for the <strong>transducers</strong><br />

versus the needed insulation levels (rated insulation <strong>voltage</strong>)<br />

and the conditions of use.<br />

The rated insulation <strong>voltage</strong> level for <strong>transducers</strong> in<br />

“industrial” applications, is defined according to several<br />

criteria listed under the EN 50178 standard and IEC 61010-1<br />

standard (“Safety requirements for electrical equipment for<br />

measurement, control and laboratory use”). Some criteria are<br />

dependent on the transducer itself when the others are linked<br />

to the application.<br />

These criteria are the following:<br />

• Clearance distance (the shortest distance in air between<br />

two conductive parts)<br />

• Creepage distance (the shortest distance along the surface<br />

of the insulating material between two conductive parts)<br />

• Pollution degree (application specific - this is a way to<br />

classify the micro-environmental conditions having effect<br />

on the insulation)<br />

• Over-<strong>voltage</strong> category (application specific - characterizes<br />

the exposure of the equipment to over-<strong>voltage</strong>s)<br />

• Comparative Tracking Index (CTI linked to the kind of<br />

material used for the insulated material) leading to a<br />

classification over different Insulating Material groups<br />

• Simple (Basic) or Reinforced isolation need<br />

LEM follows this thought process for all the transducer<br />

designs:<br />

Example: LTSP 25-NP, <strong>current</strong> transducer in a motor drive.<br />

Conditions of use:<br />

Creepage distance (on case): 12.3 mm<br />

Clearance distance (on PCB, footprint as above figure as an<br />

example): 6.2 mm<br />

CTI: 175 V (group IIIa)<br />

Over-<strong>voltage</strong> category: III<br />

Pollution Degree: 2<br />

Basic or Single insulation<br />

According to EN 50178 and IEC 61010-1 standards:<br />

With clearance distance of 6.2 mm and PD2 and OV III, the<br />

rated insulation <strong>voltage</strong> is of 600 V RMS<br />

.<br />

With a creepage distance of 12.3 mm and PD2 and CTI of 175<br />

V (group IIIa), this leads to a possible rated insulation <strong>voltage</strong><br />

of 1000 V RMS<br />

.<br />

In conclusion, the possible rated insulation <strong>voltage</strong>, in these<br />

conditions of use, is 600 V RMS<br />

(the lowest value given by the<br />

both results from the creepage and clearance distances).<br />

Reinforced insulation<br />

Let’s look at the reinforced insulation for the same creepage<br />

and clearance distances as previously defined:<br />

When looking at dimensioning reinforced insulation, from the<br />

clearance distance point of view, with OV III and according<br />

to EN 50178 and IEC 61010-1 standards, the rated insulation<br />

<strong>voltage</strong> is given whatever the pollution degree at 300 V RMS<br />

.<br />

From the creepage distance point of view, when dimensioning<br />

reinforced insulation, the creepage distance taken into<br />

account has to be the real creepage distance divided by 2,<br />

that is to say 12.3 / 2 = 6.15 mm.<br />

With that value, and PD2 and CTI of 175 V (group IIIa), this<br />

leads to a possible rated insulation <strong>voltage</strong> of 500 V . RMS<br />

In conclusion, the possible reinforced rated insulation <strong>voltage</strong>,<br />

in these conditions of use, is of 300 V RMS<br />

(the lowest value<br />

given by the both results from the creepage and clearance<br />

distances).<br />

For railway applications, the EN 50124-1<br />

(“Basic requirements - Clearances and creepage distances<br />

for all electrical and electronic equipment”) standard is used<br />

as reference to design the creepage and clearance distances<br />

for the <strong>transducers</strong> versus the needed insulation levels (rated<br />

insulation <strong>voltage</strong>) and the conditions of use.<br />

The rated insulation <strong>voltage</strong> level allowed by a transducer<br />

intended to be used in an application classified as being<br />

“Railway”, is defined according to several criteria listed under<br />

the EN 50124-1 standard.<br />

These criteria are the same as per the EN 50178 (seen<br />

previously) and are the following:<br />

- Clearance distance,<br />

- Creepage distance,<br />

- Pollution degree,<br />

- Over-<strong>voltage</strong> category,<br />

- Comparative Tracking Index (CTI),<br />

- Simple (Basic) or Reinforced isolation need.<br />

LEM follows this thought process for the railway transducer<br />

designs:<br />

Example: LTC 600-S, <strong>current</strong> transducer in an propulsion<br />

inverter<br />

Conditions of use:<br />

Creepage distance: 66.70 mm,<br />

Clearance distance: 45.90 mm,<br />

CTI: 600 V (group I),<br />

Over-<strong>voltage</strong> category: II,<br />

Pollution Degree: 3.<br />

QUALITY<br />

70<br />

71


LEM’s Quality & Standards<br />

LEM’s Quality & Standards<br />

Basic or Single insulation:<br />

According to EN 50124-1 standard: With clearance distance<br />

of 45.90 mm and PD3, U Ni<br />

(Rated impulse <strong>voltage</strong>) = 30 kV.<br />

With U Ni<br />

= 30 kV & OV II, the rated insulation <strong>voltage</strong> (AC or<br />

DC) called “U Nm<br />

” can be from >= 6.5 up to < 8.3 kV.<br />

With a creepage distance of 66.70 mm and PD3 and CTI of<br />

600 V (group I), it is allowed to have 12.5 mm/kV, leading to a<br />

possible rated insulation <strong>voltage</strong> U Nm<br />

of 5.336 kV.<br />

In conclusion, the possible rated insulation <strong>voltage</strong>, U Nm<br />

,<br />

in these conditions of use, is of 5.336 kV (the lowest value<br />

given by the both results from the creepage and clearance<br />

distances).<br />

Reinforced insulation:<br />

Let’s look for the reinforced insulation for the same creepage<br />

and clearance distances as previously defined:<br />

When dimensioning reinforced insulation, from the clearance<br />

distance point of view, the rated impulse <strong>voltage</strong>, U Ni<br />

, shall<br />

be 160% of the rated impulse <strong>voltage</strong> required for basic<br />

insulation.<br />

The clearance distance of 45.90 mm is already designed and<br />

then, we look for the reinforced insulation with this distance.<br />

Reinforced U Ni<br />

= 30 kV obtained with the clearance distance<br />

of 45.90 mm.<br />

Basic U Ni<br />

= Reinforced U Ni<br />

/ 1.6 = 18.75 kV.<br />

Reinforced U Nm<br />

: From >= 3.7 up to < 4.8 kV, according to the<br />

clearance distance.<br />

From the creepage distance point of view, when dimensioning<br />

reinforced insulation, the rated insulation <strong>voltage</strong> U Nm<br />

shall be<br />

two times the rated insulation <strong>voltage</strong> required for the basic<br />

insulation.<br />

With a creepage distance of 66.70 mm and PD3 and CTI of<br />

600 V (group I), it is then allowed to have 25 mm/kV (2 x 12.5)<br />

vs. 12.5 mm/kV previously (for basic insulation), leading to a<br />

possible reinforced rated insulation <strong>voltage</strong> U Nm<br />

of 2.668 kV.<br />

In conclusion, the possible reinforced rated insulation<br />

<strong>voltage</strong> U Nm,<br />

in these conditions of use, is of 2.668 kV (the<br />

lowest value given by the both results from the creepage and<br />

clearance distances).<br />

According to RoHS 2 directive 2011/65/EU<br />

HAS model in converter.<br />

QUALITY<br />

QUALITY<br />

HAX model in windmills inverter. Picture provided by courtesy of Infi neon.<br />

72<br />

73


VARIOUS OPTIONS FOR SECONDARY CONNECTIONS<br />

Molex 6410/A<br />

Series connector<br />

JST VH Series<br />

Connector<br />

Molex Mini-Fit, Jr 5566<br />

Series Connector<br />

LEM GROUP DESIGN SPECIFICATION<br />

LEM Subsidiary: Contact: Date:<br />

Customer information<br />

e-mail:<br />

Company : City : Country :<br />

Contact person : Phone : Fax :<br />

Project name :<br />

SECONDARY CONNECTIONS OPTIONS<br />

Threaded Studs, M4, M5, UNC...<br />

M4, M5 inserts<br />

AMP Connectors<br />

Molex 70543<br />

Series Connector<br />

...or Faston 6.30 x 0.80 or<br />

screws...<br />

...or the both, in the same time<br />

Burndy Connectors<br />

Sub-D Connectors<br />

Cables, Shielded Cables...<br />

LEMO Connectors<br />

But also Wago, Phoenix, Souriau ... connectors<br />

Application<br />

Market Drives UPS, REU Traction High precision Energy solutions Automotive<br />

Utilization <strong>voltage</strong> <strong>current</strong> power other: _____<br />

Function control differential m. ground fault detection other: _____<br />

Electrical & Environmental characteristics Transducer reference (if relevant):<br />

Signal to measure<br />

Static and intrinsic values<br />

Global accuracy (% of nominal value, @ 25 °C)<br />

Type of signal: AC sin. DC<br />

_____ %<br />

square pulse<br />

other (specify)<br />

Overall accuracy over operating temperature range<br />

bidirectional unidirectional<br />

_____ %<br />

Nominal value: _____ rms Maximum offset @ 25 °C:<br />

_____ mA/mV<br />

Measuring range: _____ pk Dielectric strength:<br />

(please provide a graph)<br />

OV category: Pollution degree:<br />

Overload value to be measured _____ rms<br />

Peak: _____ pk<br />

Rated Insulation Voltage:<br />

Duration: _____ s<br />

Single insulation:<br />

_____ V<br />

Reinforced insulation: _____ V<br />

Non measured overload: _____ pk<br />

Primary/secondary (50 Hz/ 1 mn): _____ kV rms<br />

(to withstand) Frequency: _____ Hz Screen/secondary:<br />

_____ kV rms<br />

duration: _____ ms<br />

Impulse withstand <strong>voltage</strong><br />

_____ kV rms<br />

di/dt to be followed: _____ A/µs<br />

Bandwidth:<br />

_____ kHz Partial discharge level @ 10 pC: _____ kV<br />

Operating frequency: _____ Hz Preferred output: _____ mA/A mV/A<br />

Ripple: _____ pk-pk<br />

_____ mA/V mV/V<br />

Ripple frequency: _____ Hz other (specify) _____<br />

dv/dt applied on primary circuit: _____ kV/µs<br />

Measuring resistance _____ fi min max<br />

Turn ratio:<br />

_____<br />

Power supply: _____ V ± _____ %<br />

bipolar unipolar Temperature range<br />

Operating: _____ °C to _____ °C<br />

Storage: _____ °C to _____ °C<br />

Mechanical requirements<br />

Maximum dimensions required: L _____ mm x W _____ mm x H _____ mm<br />

Mounting on: PCB Panel<br />

Output terminals: PCB Faston Threaded studs M Cable<br />

other:<br />

Primary connection: through hole: L _____ mm x W _____mm; or _____ mm<br />

busbar L _____ mm x W _____mm x H _____ mm<br />

other: _____ For the bus bar, please provide layout<br />

Applicable standards: industrial EN 50178 IEC 61800-5-1 IEC 62109-1<br />

traction EN 50155 EN 50463<br />

IEC 61010-1 other<br />

UL Certified UL508/UL60947 Other UL standard (if different than UL508)<br />

DESIGN SPECIFICATION FORM<br />

74<br />

75


Selection parameters<br />

Selection Parameters<br />

SELECTION PARAMETERS<br />

LEM provides the technical solution for <strong>current</strong> and <strong>voltage</strong><br />

measurements from a wide range of possibilities for various<br />

parameters, not only electrical but also mechanical.<br />

1. Mechanical features:<br />

• A wide range of <strong>transducers</strong> to be through hole PCB<br />

mounted, surface mounted or panel mounted with an<br />

aperture or an integrated primary conductor or both.<br />

• Multiple mounting possibilities<br />

Models such as the LF series offer several horizontal<br />

or vertical mounting possibilities, in very compact<br />

packages, allowing the user to select the most<br />

appropriate transducer mounting configuration for the<br />

application.<br />

• Various shapes and sizes<br />

LEM’s ASICs (Application Specific Integrated Circuit)<br />

used in LEM <strong>transducers</strong> have been a great contributor<br />

towards the miniaturization of the <strong>transducers</strong> volumes<br />

thanks to the integration of the complete electronics onto<br />

a unique chip.<br />

Various mechanical designs are proposed for various<br />

series covering even the same <strong>current</strong> ranges to answer<br />

to different mounting constraints in applications.<br />

Need to mount a <strong>current</strong> transducer without<br />

disconnecting the primary conductor in an existing<br />

application? This is a job for the HTR or HOP devices<br />

in industrial applications or PCM models in trackside<br />

applications. Indeed, they are able to be opened and to<br />

be clamped onto the primary conductor. They’re perfect<br />

for retrofit applications without disconnection.<br />

2. Electrical features:<br />

• Accuracy<br />

Accuracy is a fundamental parameter in electrical<br />

systems. Selecting the right transducer is often a tradeoff<br />

between several parameters: accuracy, frequency<br />

response, weight, size, costs, etc.<br />

The measuring accuracy for LEM <strong>transducers</strong> depends<br />

primarily on the operating principle.<br />

Open Loop <strong>transducers</strong> are calibrated during the<br />

manufacturing process and typically provide accuracy<br />

better than 2 % of the nominal range at 25 °C. For<br />

additional offset and gain drift parameters, please refer<br />

to corresponding datasheets.<br />

New ASIC based Open Loop <strong>transducers</strong> are being<br />

developed to provide improvement in gain and offset drift<br />

over traditional Open Loop <strong>transducers</strong> but also to reach<br />

an accuracy performance closer to Closed Loop models.<br />

Closed Loop <strong>current</strong> and <strong>voltage</strong> <strong>transducers</strong> provide<br />

excellent accuracy at 25 °C, in general below 1% of the<br />

nominal range, and a reduced error over the specified<br />

temperature range, thanks to their balanced flux<br />

operation.<br />

Fluxgate based <strong>transducers</strong> are high performance<br />

<strong>transducers</strong> with exceptional accuracy levels over their<br />

operating temperature range.<br />

• Supply <strong>voltage</strong> and consumption<br />

Most of the <strong>transducers</strong> are working for bipolar<br />

measurements using a bipolar supply <strong>voltage</strong>.<br />

U C<br />

= + / - 12 V ; + / - 15 V ; +/- 24 V ; ...<br />

However, due to power electronics evolution, and thanks<br />

to ASIC emergence, a large range of <strong>transducers</strong> are<br />

designed for bipolar measurements with a single unipolar<br />

power supply with respect to ground (0 V) : U C<br />

= + 5 V or<br />

+ 3.3 V.<br />

This is a great factor of low power consumption.<br />

Power consumption is linked to the kind of technology<br />

used for the transducer. For instance, the following<br />

typical <strong>current</strong>s are consumed versus the technologies<br />

used (this is an important parameter to take into account<br />

at the design phase):<br />

Current consumption I c (mA)<br />

700<br />

350<br />

240<br />

220<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Secondary <strong>current</strong><br />

DV, DI, DVL<br />

Open Loop<br />

Compensation <strong>current</strong><br />

Closed Loop<br />

Fluxgate C Type<br />

Fluxgate IT Type<br />

Compensation <strong>current</strong><br />

Compensation <strong>current</strong><br />

Fluxgate CAS Type<br />

Fluxgate CTSR Type<br />

Fluxgate ITC Type<br />

PRiME<br />

Technology<br />

• Reference access<br />

Models powered with + 5 V or + 3.3 V, mostly using an<br />

ASIC, can provide their internal <strong>voltage</strong> reference on<br />

an external pin or receive an external <strong>voltage</strong> reference<br />

to share it with microcontrollers or A/D converters for<br />

perfect communication.<br />

Performances such as offset, gain and offset drifts can<br />

be improved by communicating with the microcontroller<br />

directly. Some special ASICs have been designed by<br />

LEM to answer to that specific market requirement.<br />

Indeed ASICs’ technology allows some specific functions<br />

and improved performances such as better offset and<br />

gain drifts.<br />

• Frequency response<br />

The frequency response of a transducer is also primarily<br />

linked to the embedded technology.<br />

Some key factors affecting the bandwidth performance,<br />

for the different technologies that LEM offers, are for<br />

example:<br />

• Open Loop: Core geometry, number and<br />

thickness of the laminations, type of core<br />

material and Hall effect chip, etc directly impact<br />

the bandwidth. However use of the latest<br />

generation of ASICs has substantially improved<br />

that performance.<br />

• Closed Loop, Fluxgate types: Coupling<br />

between primary and secondary (depending on<br />

the mechanical and magnetic circuit designs)<br />

and the core material have a large influence on<br />

the bandwidth.<br />

• For the DV, DI, DVL-Type and PRiME<br />

technologies, it is a question of electronic<br />

limitation of the device output.<br />

• For Closed Loop Hall effect <strong>voltage</strong><br />

<strong>transducers</strong>, bandwidth is limited due to<br />

the primary inductance. Please refer to the<br />

response time in the individual data sheets.<br />

Bandwidth (kHz)<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

…<br />

50<br />

40<br />

30<br />

20<br />

10<br />

DC<br />

10 Hz to 400 Hz<br />

Current transformer<br />

Rogowski<br />

Technology<br />

• Operating Temperature Range<br />

The operating temperature range is based on the<br />

materials, the construction of the selected transducer,<br />

and the technology used. The minimum temperatures are<br />

typically – 40, - 25, or – 10° C while the maximums are +<br />

50, + 70, + 85, or + 105° C.<br />

LEM offers a comprehensive range of <strong>transducers</strong><br />

optimized for industrial operating environments.<br />

14<br />

10 Hz to 6 kHz<br />

9.5<br />

82<br />

Open Loop<br />

O/L ASIC<br />

Fluxgate IT Type<br />

Closed Loop<br />

Fluxgate C Type<br />

DV, DI, DVL<br />

PRiME<br />

Fluxgate CAS Type<br />

Fluxgate CTSR Type<br />

Fluxgate ITC Type<br />

The <strong>transducers</strong> included in this catalogue have various<br />

temperature specifications related to their global<br />

accuracy over a specific operating temperature range.<br />

LEM can also provide <strong>transducers</strong> with operating<br />

temperature ranges outside the listed selection to fulfill a<br />

specific requirement.<br />

• Output signal<br />

LEM <strong>transducers</strong> are available with different output<br />

signals, mainly depending on the operation principle and<br />

the application.<br />

Closed Loop, fluxgate IT & ITC, DV & DVL & DI, <strong>current</strong><br />

transformer type <strong>transducers</strong> generally provide a <strong>current</strong><br />

output, proportional to the primary signal. The user can<br />

obtain a <strong>voltage</strong> signal by defining a burden resistor<br />

within the limits specified in the datasheet.<br />

Open Loop, fluxgate C & CAS & CTSR types, PRiME<br />

<strong>transducers</strong> directly provide an amplified <strong>voltage</strong> signal<br />

proportional to the primary <strong>current</strong>.<br />

In the case of single supply <strong>voltage</strong>, the output signal<br />

varies around a nonzero reference.<br />

Some <strong>transducers</strong> series offer (regardless of the<br />

technology) specific output signals, adapted to the kind<br />

applications (trackside, process automation…), such as :<br />

• Standard output signals (e.g. 0-5 VDC, 0-10<br />

VDC or 4-20 mA)<br />

• But also, RMS or T-RMS (“True Root Mean<br />

Square”) calculation to accurately measure<br />

<strong>current</strong> magnitudes, even on non-linear loads<br />

or in noisy environments.<br />

• Voltage measurement<br />

LEM provides a wide selection of solutions for<br />

Galvanically isolated <strong>voltage</strong> measurement, at various<br />

levels of performance.<br />

There are two different options for <strong>voltage</strong> measurement:<br />

• User specified primary resistor:<br />

The user connects a primary resistor in series<br />

with the transducer. The value of the primary<br />

resistor R 1<br />

is selected according to the<br />

<strong>voltage</strong> to be measured. This approach allows<br />

for maximum flexibility.<br />

• Integrated primary resistor: The integrated<br />

primary resistor R 1<br />

predefines the nominal<br />

measuring <strong>voltage</strong> of the transducer.<br />

LEM offers a wide selection of nominal <strong>voltage</strong> levels to cover<br />

a variety of applications.<br />

SELECTION PARAMETERS<br />

76<br />

77


Dimension Drawings<br />

Dimension Drawings<br />

All dimensions are in mm • Hall effect chip location All dimensions are in mm •<br />

LA 25-NP/SP7/SP8/SP9/<br />

1 SP11/SP13/SP14/SP34/SP38/SP39 2<br />

CTSR 0.3-P,<br />

LTSR 6-NP,<br />

CAS 6-NP, CAS 15-NP,<br />

CTSR 0.6-P, CTSR 1-P 3 CTSR 0.3-P/SP1<br />

10<br />

LTSR 15-NP, LTSR 25-NP<br />

11<br />

CAS 25-NP, CAS 50-NP<br />

12<br />

Hall effect chip location<br />

CASR 6-NP, CASR 15-NP,<br />

CASR 25-NP, CASR 50-NP<br />

•<br />

CTSR 0.3-P/SP10<br />

CTSR 0.3-TP/SP4<br />

HO 25-NPPR, HO 25-NPPR/SP33<br />

HO 25-NSMPR, HO 25-NSMPR/SP33<br />

4 CTSR 0.6-P/SP10 5 CTSR 0.3-P/SP11 6<br />

CTSR 0.6-TP/SP2<br />

13<br />

14<br />

15 HXN 03…50-P<br />

HO 8/15/25-NP-0000, HO 8/15/25-NP/SP33-1000<br />

HO 8/15/25-NSM-0000, HO 8/15/25-NSM/SP33-1000<br />

HXN 03 .. 30-P HXN 50-P<br />

•<br />

•<br />

HXN 03-P 05-P 10-P 15-P<br />

d 0.6 0.8 1.1 1.4<br />

HXN 20-P 25-P 30-P 50-P<br />

d 1.6 1.6 1.6 1.2 X 6.3<br />

1 : - 15 V<br />

2 : 0 V<br />

3 : + 15 V<br />

4 : Output<br />

5 : Primary input Current (+)<br />

6 : Primary input Current (-)<br />

7<br />

CTSR 0.3-TP/SP14<br />

CTSR 0.6-TP/SP12<br />

8<br />

CKSR 6-NP, CKSR 15-NP,<br />

CKSR 25-NP, CKSR 50-NP<br />

9<br />

LTS 6-NP,<br />

LTS 15-NP, LTS 25-NP<br />

16 HXD 03…25-P<br />

17 LA 25-NP, LA 35-NP 18 LAH 25-NP<br />

DRAWINGS<br />

Primary pins<br />

Secondary pins<br />

5-0.5x0.25<br />

6<br />

•<br />

78<br />

79<br />

DRAWINGS


Dimension Drawings<br />

Dimension Drawings<br />

All dimensions are in mm • Hall effect chip location All dimensions are in mm • Hall effect chip location<br />

19 LTSP 25-NP<br />

20<br />

HLSR 10/20/32/40/50-P<br />

HLSR 10/20/32/40/50-P/SP33<br />

21<br />

HLSR 10/20/32/40/50-SM<br />

HLSR 10/20/32/40/50-SM/SP33<br />

28<br />

HAL 50...600-S<br />

29<br />

HAS 50...600-S<br />

30<br />

HAS 50...600-P<br />

•<br />

•<br />

Secondary terminals<br />

Terminal 1 : supply <strong>voltage</strong> +15V<br />

Terminal 2 : supply <strong>voltage</strong> -15V<br />

Terminal 3 : output<br />

Terminal 4 : 0V<br />

22 LA 25-NP/SP25 23 HTT 25...150-P 24<br />

LA 100-P, LA 100-P/SP13<br />

LA 55-P, LA 55-P/SP1, LA 55-P/SP23<br />

31<br />

HTB 50...400-P<br />

32 HTB 50...100-TP<br />

33 HTB 50...400-P/SP5<br />

Front view<br />

Top view<br />

I P<br />

Left view<br />

•<br />

•<br />

•<br />

34<br />

1.5<br />

4-0.635x0.635<br />

3-0.635x0.635<br />

3 21<br />

24.5<br />

39<br />

•<br />

d16<br />

3.5 19.5<br />

Positive Current Flow<br />

14 MAX.<br />

9 +/-1<br />

Secondary connection<br />

6 +/-1<br />

2-P=2.5<br />

5.5<br />

2-d2<br />

Mounting Pins<br />

+ : Supply <strong>voltage</strong> + 15 V<br />

- : Supply <strong>voltage</strong> - 15 V<br />

0 : Supply <strong>voltage</strong> GND<br />

V 1 : measure 1<br />

V 2 : measure 2<br />

V 3 : measure 3<br />

10 19<br />

Secondary Pin Identification<br />

3<br />

3<br />

7<br />

11<br />

1 +Vc<br />

2 0V<br />

3 Output<br />

25<br />

LA 100-TP, LA 55-TP,<br />

LA 55-TP/SP1, LA 55-TP/SP27<br />

26 HTR 50...500-SB 27<br />

LAH 50-P, LAH 100-P<br />

34<br />

HTB 50...100-TP/SP5<br />

35 HASS 50...600-S 36 LTT 88-S<br />

39<br />

14 MAX.<br />

34<br />

1.5<br />

4-0.635x0.635<br />

3-0.635x0.635<br />

•<br />

321<br />

10<br />

1.5<br />

1.5<br />

17<br />

3.5<br />

3.5<br />

1.5<br />

Positive Current Flow<br />

• • •<br />

DRAWINGS<br />

Secondary terminals<br />

Terminal 1 : Supply <strong>voltage</strong> + 12 .. 15 V<br />

Terminal 2 : Supply <strong>voltage</strong> - 12 .. 15 V<br />

Terminal 3 : Output<br />

Terminal 4 : 0V<br />

•<br />

80 81<br />

14<br />

2<br />

2-P=2.5 10.5 3 3<br />

9<br />

3.25<br />

Secondary Pin Identification<br />

1 +Vc<br />

2 0V<br />

3 Output<br />

6-1.5x1.5<br />

3<br />

3<br />

11<br />

•<br />

DRAWINGS


9<br />

1<br />

65<br />

12<br />

20<br />

8<br />

5<br />

4<br />

29<br />

30<br />

10<br />

20<br />

Dimension Drawings<br />

Dimension Drawings<br />

All dimensions are in mm • Hall effect chip location All dimensions are in mm • Hall effect chip location<br />

37 HAC 100...800-S<br />

38 HTA 100...1000-S<br />

39 HOP 200...600-SB<br />

46 LF 205-P/SP1<br />

47<br />

LA 200-P, LA 200-P/SP4<br />

LA 125-P, LA 125-P/SP1/SP4<br />

48 LA 125-P/SP3<br />

20 d 4.5<br />

Molex 5045-04AG<br />

4 3 2 1<br />

10<br />

7.5<br />

18<br />

28<br />

42<br />

24<br />

x<br />

•<br />

•<br />

•<br />

23<br />

4.5 20 d 2.5<br />

58<br />

x<br />

21<br />

16<br />

34<br />

0M-+<br />

GIN OFS<br />

x<br />

up to HAC 300-S<br />

from HAC 400-S<br />

40 HTFS 200...800-P/SP2<br />

41 HTFS 200...800-P<br />

42 HAT 200...1500-S<br />

49<br />

LAH 125-P<br />

50<br />

LA 130-P<br />

LA 130-P/SP1<br />

51<br />

LA 150-P<br />

LA 150-P/SP1<br />

70<br />

37<br />

33<br />

R3<br />

Ip<br />

0.5<br />

16.5<br />

3<br />

40<br />

d6<br />

d5<br />

Ip<br />

0.5<br />

16.5<br />

1<br />

4-d3.5<br />

40<br />

33<br />

1.5<br />

30.5<br />

40.5<br />

1.5<br />

2.1<br />

24<br />

20.3<br />

20<br />

4 1<br />

4-d=1.0<br />

4<br />

1<br />

4-0.25x0.5<br />

33<br />

3-P =2.54 16<br />

5<br />

3.5+/-1<br />

d22<br />

7<br />

4.5<br />

26<br />

4<br />

1<br />

4-0.25x0.5<br />

16<br />

3-P=2.54<br />

5<br />

3.5+/-1<br />

d22<br />

7<br />

4.5<br />

33<br />

26<br />

25<br />

5.8<br />

90<br />

9.5<br />

9.3<br />

3<br />

Current Direction<br />

Pins Arrangement<br />

1 2 3 4<br />

+ - O UT GND<br />

•<br />

Terminal P in<br />

1...+5V<br />

2...0V<br />

3...Output<br />

4...Vref(IN/OUT)<br />

Terminal Pin<br />

1...+5V<br />

2...0V<br />

3...Output<br />

4...Vref<br />

4.50<br />

4.50<br />

6<br />

12<br />

6 78 1<br />

43<br />

LF 205-S<br />

LF 205-S/SP3<br />

44<br />

LF 205-S/SP1<br />

LF 205-S/SP5<br />

45 LF 205-P<br />

52 LA 150-TP<br />

53<br />

LAF 200-S<br />

54<br />

LF 305-S<br />

• •<br />

•<br />

•<br />

DRAWINGS<br />

82 83<br />

DRAWINGS


4<br />

4 3 2 1<br />

6 5 4 3 2 1<br />

T.P GND OUTPUT 0V -Vc +Vc<br />

Ofs<br />

Gin<br />

Dimension Drawings<br />

Dimension Drawings<br />

All dimensions are in mm • Hall effect chip location All dimensions are in mm • Hall effect chip location<br />

55<br />

LF 305-S/SP10<br />

56<br />

LA 306-S<br />

57<br />

LT 305-S<br />

64<br />

RT 2000<br />

65 RT 2000/SP1 66<br />

LF 1005-S<br />

•<br />

58<br />

LF 505-S<br />

59<br />

LF 505-S/SP15<br />

HOP 500-SB/SP1<br />

60 HOP 800…2000-SB<br />

67 LF 1005-S/SP22 68 HOP 2000-SB/SP1 69<br />

LF 2005-S<br />

1 - 4<br />

165<br />

5<br />

•<br />

•<br />

Window 104 x 40<br />

•<br />

4- 3.30<br />

29.5 0.5<br />

45.5 0.5 29.5 0.5<br />

50<br />

96<br />

53.3<br />

2-M 4<br />

15 0.5<br />

5.5<br />

5.5<br />

37<br />

211 1<br />

221 1<br />

25 0.5<br />

235 1<br />

61 HAX 500…2500 - S<br />

62<br />

RT 500<br />

63<br />

RT 500/SP1<br />

70 HAXC 2000-S<br />

71<br />

HAZ 4000...20000-SB,-SBI,<br />

-SBI/SP1, -SRU, -SRI, -SRI/SP1<br />

72<br />

LT 4000-S<br />

LT 4000-S/SP34<br />

HAX 500 t o 2500 -S<br />

Dimensions (in mm)<br />

56<br />

18.5 18.5<br />

11 11<br />

d 5.5<br />

FUJICON F2023A<br />

6<br />

1<br />

DRAWINGS<br />

4 17<br />

21 12<br />

1 1<br />

Fixation by base-plate or on bus bar<br />

with M5 screws<br />

Positive Current Flow<br />

108<br />

64<br />

126<br />

144<br />

10<br />

4<br />

1<br />

MOLEX Connector<br />

5045-04A<br />

Pins arrangement:<br />

1 2 3 4<br />

(+) (-) Output 0V<br />

45°<br />

18<br />

25<br />

62<br />

46<br />

Max 5<br />

d 5.5<br />

84 85<br />

PINS ARRANGEMENT<br />

1. +15V<br />

2. –15V<br />

3. OUTPUT<br />

4. 0V (GND)<br />

All holes = ø 6 mm<br />

50 160 +/-1.5<br />

50<br />

48<br />

75<br />

65<br />

48<br />

35<br />

7.5<br />

125<br />

+<br />

x<br />

x<br />

HAZ 10000-SB<br />

250 +/-1.5<br />

235<br />

42 +/-2<br />

200<br />

For HAZ 4000 models<br />

For the other models<br />

162 +/-2<br />

x<br />

4-D6<br />

M5<br />

(De pth:11mm Max )<br />

M5<br />

Terminal<br />

1...+Vc<br />

2...-Vc<br />

3...0V<br />

4...OUTPUT<br />

5...GND<br />

6...N.C.<br />

•<br />

DRAWINGS


Dimension Drawings<br />

Dimension Drawings<br />

All dimensions are in mm • Hall effect chip location All dimensions are in mm •<br />

73<br />

LT 4000-T<br />

74 ITL 4000-S 75<br />

LT 10000-S<br />

82<br />

DV 1200/SP2,<br />

DV 1500, DV 2000/SP1<br />

83 DV 2000/SP2<br />

84<br />

Hall effect chip location<br />

DV 2800/SP4,<br />

DV 3000/SP1, DV 4200/SP4<br />

•<br />

•<br />

76 LV 25-P, LV 25-P/SP5<br />

77 LV 100 78<br />

DVL 50...2000<br />

85<br />

LV 100-2500...4000<br />

86<br />

DVL 750/SP2,<br />

DVL 1000/SP5, DVL 1500/SP2<br />

87<br />

DVL 1000/SP1,<br />

DVL 1500/SP1, DVL 2000/SP1<br />

•<br />

•<br />

•<br />

•<br />

•<br />

79<br />

LV 25-200...1200 80 CV 3-200...2000 DV 1000,<br />

DVL 1000/SP7,<br />

DVL 1000/SP8,<br />

81<br />

88 89<br />

90<br />

DV 2000, DV 4200/SP3<br />

DVL 1500/SP5, DVL 2000/SP5<br />

DVL 1500/SP6, DVL 2000/SP6<br />

DV 2800/SP1, DV 4000/SP2<br />

DRAWINGS<br />

86 87<br />

DRAWINGS


60<br />

351<br />

30<br />

10,5 4x<br />

350<br />

290<br />

57<br />

106<br />

122<br />

176,5<br />

284<br />

69<br />

139<br />

110<br />

210<br />

73<br />

54<br />

90<br />

106<br />

85<br />

LED - NORMAL OPERATION<br />

85<br />

60<br />

213<br />

30<br />

67,5<br />

0<br />

480<br />

104<br />

90<br />

Ø30<br />

128<br />

0<br />

169<br />

109<br />

67,5<br />

213<br />

54<br />

4xØ5.5 MOUNTING HOLES<br />

2xØ6.5 MOUNTING HOLES<br />

M8x1,25 - 6H<br />

100<br />

M12x1.75 - 6H<br />

Lifting Eyebolt DIN 582 - M12<br />

240<br />

412,5<br />

169,5<br />

77,5<br />

30,5<br />

90<br />

96<br />

70<br />

209<br />

180<br />

25<br />

99<br />

350<br />

134<br />

174,5<br />

69<br />

Dimension Drawings<br />

Dimension Drawings<br />

All dimensions are in mm • Hall effect chip location All dimensions are in mm • Hall effect chip location<br />

91 DV 4000/SP1<br />

92 DV 4200/SP1<br />

93<br />

DV 4200/SP5<br />

100 IT 700-SPR ULTRASTAB<br />

101 IT 1000-S/SP1 ULTRASTAB<br />

102<br />

ITZ 5000...16000-S,-SB, ITZ 24000-S<br />

ITZ 600-SPR,-SBPR, ITZ 2000-S,-SPR,-SB,-SBPR<br />

5,5<br />

! 34 MAX<br />

! 6,5<br />

109<br />

128<br />

104<br />

6<br />

9<br />

1<br />

5<br />

Pin list for D-Sub 9<br />

1: Current Return<br />

2: No Connection<br />

3: Normal Operation Status<br />

4: Ground<br />

5: -Vc<br />

6: Current Output<br />

7: No Connection<br />

8: Normal Operation Status<br />

9: +Vc<br />

Shield: Electrostatic shield<br />

! 30<br />

Connection<br />

94 ITN 12-P ULTRASTAB<br />

95<br />

IT 60-S, IT 200-S,<br />

IT 400-S ULTRASTAB<br />

96 ITB 300-S<br />

103 ITZ 600-SPR,-SBPR<br />

104 ITZ 2000-S,-SB,-SPR,-SBPR<br />

105<br />

ITZ 5000-S,-SB<br />

Ø 28,2 MAX<br />

Souriau UT001619SH<br />

121<br />

4)<br />

25,4 MIN<br />

200 35<br />

50<br />

140,3<br />

350<br />

284<br />

192<br />

10,5 THRU<br />

98<br />

66<br />

290<br />

97 ITL 900-T<br />

98 ITN 600-S ULTRASTAB 99<br />

IT 700-S, IT 700-SB,<br />

ITN 900-S ULTRASTAB<br />

106 ITZ 10000-S,-SB<br />

107 ITZ 16000-S,-SB<br />

108<br />

LAC 300-S,<br />

LAC 300-S/SP1/SP2/SP3/SP4/SP5<br />

100<br />

•<br />

480<br />

150,3<br />

DRAWINGS<br />

88 89<br />

152<br />

DRAWINGS


Dimension Drawings<br />

Dimension Drawings<br />

All dimensions are in mm • Hall effect chip location All dimensions are in mm • Hall effect chip location<br />

109 LAC 300-S/SP7<br />

110 LAC 300-S/SP8 111<br />

LA 200-SD/SP3<br />

LA 500-SD/SP2<br />

118 LTC 600-SF, LTC 1000-SF<br />

119 LTC 600-SFC, LTC 1000-SFC 120 LTC 600-T, LTC 1000-T<br />

•<br />

1220 +/-2<br />

•<br />

• •<br />

• • •<br />

112 LTC 350-S, LTC 500-S<br />

113 LTC 350-SF, LTC 500-SF<br />

114 LTC 350-T, LTC 500-T<br />

121 LTC 600-TF, LTC 1000-TF<br />

122 HTC 1000...3000-S/SP4<br />

123 LF 1005-S/SP14<br />

•<br />

• •<br />

•<br />

•<br />

115 LTC 350-TF, LTC 500-TF<br />

116 LF 505-S/SP23<br />

117 LTC 600-S, LTC 1000-S<br />

124 LTC 1000-S/SP1<br />

125 LTC 1000-S/SP25<br />

126 LTC 1000-SF/SP24<br />

•<br />

4xKA25 depth 6<br />

•<br />

•<br />

•<br />

• •<br />

DRAWINGS<br />

90 91<br />

DRAWINGS


Dimension Drawings<br />

Dimension Drawings<br />

All dimensions are in mm • Hall effect chip location All dimensions are in mm • Hall effect chip location<br />

127 HAR 1000-S<br />

128 ITC 2000-S/SP1 129 LF 2005-S/SP1<br />

136 LT 4000-S/SP43<br />

137 LT 4000-T/SP40<br />

138 ITC 4000-S<br />

•<br />

Shielded cable 3 x 0.5 mm 2<br />

• •<br />

130 LF 2005-S/SP27<br />

131 LF 2005-S/SP28<br />

132 LT 4000-S/SP24<br />

139 CD 1000-S/SP6<br />

140 CD 1000-T/SP7<br />

141 DI 30/SP1<br />

•<br />

•<br />

•<br />

133 LT 4000-S/SP44<br />

134 LT 4000-S/SP12<br />

135 LT 4000-S/SP35<br />

142 RA 1005-S<br />

143 RA 2000-S/SP1<br />

144 RA 2000-S/SP2<br />

•<br />

•<br />

DRAWINGS<br />

92 93<br />

DRAWINGS


L<br />

K<br />

L<br />

K<br />

Dimension Drawings<br />

Dimension Drawings<br />

All dimensions are in mm • Hall effect chip location All dimensions are in mm • Hall effect chip location<br />

145 RA 2000-S/SP3<br />

146 RA 2000-S/SP4 147 RA 2000-T/SP2<br />

154 PCM 5-PR/SP2<br />

155 TT 50-SD<br />

156 TT 100-SD<br />

8<br />

16<br />

13<br />

3.2<br />

k ( Wt )<br />

l ( Bk)<br />

18<br />

3.2<br />

k( Wt )<br />

l ( Bk)<br />

• •<br />

Ip<br />

43<br />

23.5<br />

27.5<br />

10 8<br />

1000 +/-20.00<br />

1.5<br />

Ip<br />

51<br />

31.5<br />

23.5<br />

10 8<br />

1000 +/-20.00<br />

1.5<br />

N.P<br />

N.P<br />

L<br />

K<br />

32.5<br />

L<br />

K<br />

40.5<br />

4 23.5 4<br />

2.5<br />

4 28.5 4<br />

2.5<br />

148<br />

PCM 10-P,<br />

PCM 20-P, PCM 30-P<br />

149 PCM 10-P/SP1<br />

150<br />

PCM 20-P/SP2,<br />

PCM 20-P/SP6, PCM 30-P/SP1<br />

157 AT 5...150 B5/B10<br />

158 AT 5...150 B420L<br />

159<br />

AK 50...200 B10,<br />

AK 5...200 B420L<br />

16<br />

16<br />

• •<br />

18<br />

1 8<br />

1 8<br />

1 8<br />

• •<br />

• •<br />

23.5<br />

31.5<br />

51<br />

N.P<br />

16<br />

22<br />

4<br />

(-) (+)<br />

28.5<br />

+<br />

+<br />

4<br />

1.5<br />

40 .5<br />

23.5<br />

31.5<br />

51<br />

N.P<br />

16<br />

2 2<br />

4<br />

(O UT ) (+V )<br />

28.5<br />

+<br />

+<br />

4<br />

1 .5<br />

40 .5<br />

2-M 3 terminal with cover<br />

2.5<br />

2-M3<br />

terminal with cover<br />

2 .5<br />

151 PCM 20-P/SP3<br />

152 PCM 20-P/SP4<br />

153<br />

PCM 5-PR/SP1,<br />

PCM 10-PR/SP1<br />

160 AKR 5...200 B420L<br />

161<br />

AK 50...200 C10,<br />

AK 5...200 C420L, AKR 5...200 C420L<br />

162<br />

AP 50...400 B5/B10<br />

APR 50...400 B5/B10<br />

61<br />

61.0<br />

Output Voltage<br />

Selection Switch<br />

20<br />

55<br />

Range Selection Switch<br />

16.40<br />

19<br />

4.70<br />

• • • • • •<br />

21.7<br />

13<br />

57.2<br />

24.5<br />

55.4<br />

49<br />

40(distance between screws)<br />

37<br />

33.50<br />

21<br />

14.80<br />

DIN size 35.50<br />

69<br />

3.2<br />

13<br />

21.7<br />

89.7<br />

30<br />

3.2<br />

23.5<br />

88.9<br />

23.7<br />

Axisof aperture<br />

25<br />

67<br />

61<br />

4.5<br />

4.5<br />

18.50<br />

DRAWINGS<br />

39<br />

18.50<br />

78<br />

Secondary terminals:<br />

77.3<br />

94 95<br />

15<br />

DRAWINGS


Dimension Drawings<br />

All dimensions are in mm<br />

86<br />

163<br />

166 AHR 500...2000 B5/B10/B420<br />

8.30<br />

20<br />

3<br />

55<br />

22.28<br />

35<br />

Range Selection Switch<br />

40(distance between screws)<br />

33.50<br />

Axis of aperture<br />

18.50<br />

18.50<br />

174<br />

104<br />

5.50<br />

55<br />

110<br />

150<br />

40<br />

21<br />

14.80<br />

AP 50...400 B420L<br />

APR 50...400 B420L<br />

4.70<br />

37<br />

15<br />

37<br />

67<br />

9.10<br />

16.40<br />

25<br />

25<br />

50.50<br />

54.10<br />

DIN size35.50<br />

69<br />

20<br />

164 AKR 750/2000 C420L J<br />

4.5<br />

167<br />

114<br />

88<br />

101.5<br />

112<br />

76.2<br />

28.4<br />

DK 100...400<br />

B5/B10/B420/B020/B420 B<br />

27<br />

63.5<br />

165<br />

25<br />

33. 80<br />

15<br />

4. 60<br />

6<br />

8. 30<br />

22.28<br />

• Hall effect chip location<br />

70<br />

60<br />

32<br />

90<br />

DHR 100...1000 C5/C10/C420<br />

6.80<br />

•<br />

78<br />

6. 80<br />

168 DK 20...100 C420 B<br />

10<br />

2. 50<br />

4. 60<br />

40<br />

25<br />

4<br />

-<br />

+<br />

70<br />

PRODUCT CODING / Industrial & Traction Transducers<br />

Family<br />

A : <strong>transducers</strong> using the principle of isolation amplifi er<br />

C : <strong>transducers</strong> using the principle of fl uxgate compensation<br />

D : digital <strong>transducers</strong><br />

F : <strong>transducers</strong> using the detector of fi elds<br />

H : <strong>transducers</strong> using the Hall effect without magnetic compensation<br />

I : compensation <strong>current</strong> <strong>transducers</strong> with high accuracy<br />

L : <strong>transducers</strong> using the Hall effect with magnetic compensation<br />

R : <strong>transducers</strong> using the principle of the Rogowski loop<br />

T : <strong>transducers</strong> using the simple transformer effect<br />

Group:<br />

A or AK or AL or AS 1)<br />

or AT or AX or AZ or AXC<br />

AR or AW or AC or X or XN<br />

AF<br />

AH<br />

AIS, XS, ASS, AFS<br />

ASR, KSR, LSR<br />

AY<br />

B<br />

C<br />

D<br />

HS<br />

F<br />

FWS<br />

I<br />

MS<br />

O<br />

OP<br />

TC<br />

TD<br />

TKS, TFS<br />

TP, TO, TN, TZ, TL, T, TA, TB, TY<br />

TR<br />

TS<br />

TSR, TSP<br />

TT<br />

V, VL<br />

: with rectangular laminated magnetic circuit<br />

: with rectangular laminated magnetic circuit<br />

: with rectangular laminated magnetic circuit and fl at housing<br />

: vertical mounting<br />

: rectangular laminated magnetic circuit +<br />

unidirectional power supply + reference access<br />

: rectangular magnetic circuit + unipolar power supply + reference access<br />

: rectangular magnetic circuit + hybrid<br />

: double toroidal core<br />

: apparent printed circuit<br />

: differential measurement<br />

: Hall effect without magnetic compensation; magnetic concentrators<br />

+ unidirectional power supply + reference access. When used with<br />

F (FHS): Minisens, SO8 transducer<br />

: fl at design<br />

: fl at mounting + mounting on wire + unidirectional power supply<br />

: shunt isolator<br />

: surface mounted device + unidirectional power supply + reference access<br />

: using ASIC providing multitude of options + unidirectional power supply + reference access<br />

: opening laminated magnetic circuit<br />

: transducer reserved for the traction<br />

: double measurement<br />

: core, fl at case + unidirectional power supply + reference access<br />

: toroidal core<br />

: opening core<br />

: core + unipolar power supply<br />

: core + unipolar power supply + reference access<br />

: triple measurement<br />

: <strong>voltage</strong> measurement<br />

: compact hybrid for PCB mounting<br />

Y<br />

Nominal Amperage<br />

- <strong>current</strong> transducer : rms amperes<br />

- <strong>voltage</strong> tranducer : rms amperes-turns<br />

- 0000 : Nominal Voltage (-1000 meaning 1000 V, with built in primary resistor R1)<br />

- AW/2 : particular type of <strong>voltage</strong> transducer<br />

- AW/2/200: Nominal <strong>voltage</strong> for AW/2 design (200 meaning 200V with built in primary resistor R1)<br />

169 DH 500...2000 B 420L B<br />

EM4T II<br />

Execution<br />

N : multiple range<br />

P : assembly on printed circuit<br />

S(I) : with through-hole for primary conductor<br />

SM : surface mounted<br />

T(I) : with incorporated primary busbar<br />

DRAWINGS<br />

86<br />

8.30<br />

3<br />

96<br />

12.12<br />

35<br />

174<br />

104<br />

5.50<br />

55<br />

110<br />

150<br />

40<br />

15<br />

9.10<br />

37<br />

25 20<br />

I P Current direction<br />

50.50<br />

54.10<br />

HLSR 10-SM/...<br />

LTC 600-SF/...<br />

Particularities (1or 2 optional characters or fi gures)<br />

B : bipolar output <strong>voltage</strong><br />

BI : bipolar <strong>current</strong> output<br />

C : fastening kit without bus bar<br />

D : can be disassembled<br />

F : with mounting feet<br />

FC : with mounting feet + fastening kit<br />

P : assembly on printed circuit<br />

PR : programmable<br />

R : rms output<br />

RI : rms <strong>current</strong> output<br />

RS : serial output<br />

RU : rms <strong>voltage</strong> output<br />

Variants<br />

Differing from the standard product... /SPXX<br />

1) When used with L (LAS): <strong>current</strong> transducer with<br />

secondary winding and unipolar power supply<br />

using Eta technology<br />

When used with C (CAS): <strong>current</strong> transducer with<br />

rectangular magnetic circuit + unipolar power<br />

supply<br />

When used with H (HAS): <strong>current</strong> transducer with<br />

rectangular magnetic circuit using O/L Hall effect<br />

technology<br />

97<br />

PRODUCT CODING


Symbols and Terms<br />

BW<br />

Frequency bandwidth<br />

R P<br />

Primary coil resistance at T A max<br />

CTI<br />

Comparative Tracking Index<br />

R S<br />

Secondary coil resistance at T A max<br />

d Cl<br />

Clearance distance<br />

T A<br />

Ambient operating temperature<br />

d Cp<br />

Creepage distance<br />

TCR IM<br />

Temperature coefficient of R IM<br />

G<br />

Sensitivity<br />

TCI OUT<br />

Temperature coefficient of I OUT<br />

L<br />

I C<br />

Linearity error<br />

Current consumption<br />

I O<br />

Zero offset <strong>current</strong>, T A<br />

= 25 °C<br />

I OE<br />

Electrical offset <strong>current</strong>, T A<br />

= 25 °C<br />

I OM<br />

I OT<br />

I OUT<br />

I PN<br />

I P<br />

I PM<br />

I PR<br />

I S<br />

I SN<br />

IPxx<br />

K N<br />

M<br />

N<br />

N p<br />

N S<br />

N p<br />

/N S<br />

N T<br />

R IM<br />

R L<br />

R M min<br />

R M max<br />

Residual <strong>current</strong> @ I P<br />

= 0 after an overload<br />

Thermal drift of offset <strong>current</strong><br />

Max. allowable output <strong>current</strong> at I PN<br />

or V PN<br />

Primary nominal RMS <strong>current</strong><br />

Primary <strong>current</strong><br />

Primary <strong>current</strong>, measuring range<br />

Primary residual <strong>current</strong><br />

Secondary <strong>current</strong><br />

Secondary nominal RMS <strong>current</strong><br />

Protection degree<br />

Turns ratio<br />

Mutual inductance<br />

Number of turns<br />

Number of primary turns<br />

Number of secondary turns<br />

Turns ratio<br />

Number of turns (test winding)<br />

Internal measuring resistance<br />

Load resistance<br />

Minimum measuring resistance at T A max<br />

Maximum measuring resistance at T A max<br />

TCI OE<br />

Temperature coefficient of I OE<br />

TCV OUT<br />

TCV OE<br />

TCV Ref<br />

Temperature coefficient of V OUT<br />

Temperature coefficient of V OE<br />

Temperature coefficient of V Ref<br />

TCV OUT<br />

/ V Ref<br />

Temperature coefficient of V OUT<br />

/V Ref<br />

@ I P<br />

= 0<br />

TCG Temperature coefficient of the gain<br />

t r<br />

t ra<br />

U C<br />

U b<br />

U d<br />

U e<br />

Response time<br />

Reaction time<br />

Supply <strong>voltage</strong><br />

Rated isolation <strong>voltage</strong> RMS, reinforced or basic isolation<br />

RMS <strong>voltage</strong> for AC isolation test, 50 Hz, 1 min<br />

RMS <strong>voltage</strong> for partial discharge extinction @ 10 pc<br />

U Nm<br />

Rated insulation <strong>voltage</strong> according to EN 50124-1<br />

U W<br />

V H<br />

Impulse withstand <strong>voltage</strong>, 1,2/50 μs<br />

Hall Voltage<br />

V O<br />

Zero offset <strong>voltage</strong>, T A<br />

= 25 °C<br />

V OE<br />

Electrical offset <strong>voltage</strong>, T A<br />

= 25 °C<br />

V OM<br />

V OT<br />

V OUT<br />

V PN<br />

V P<br />

V Ref<br />

Residual <strong>voltage</strong> @ I P<br />

= 0 after an overload<br />

Temperature variation of offset <strong>voltage</strong><br />

Output <strong>voltage</strong> at ± I PN<br />

or V PN<br />

Primary nominal RMS <strong>voltage</strong><br />

Primary <strong>voltage</strong>, measuring range<br />

Reference <strong>voltage</strong><br />

X Typical accuracy, T A<br />

= 25 °C<br />

X G<br />

Global accuracy @ I PN<br />

or V PN<br />

, T A<br />

= 25 °C<br />

5 Year Warranty on LEM Transducers<br />

We design and manufacture high quality and highly reliable products for our customers<br />

all over the world.<br />

We have delivered several million <strong>current</strong> and <strong>voltage</strong> <strong>transducers</strong> since 1972 and most of<br />

them are still being used today for traction vehicles, industrial motor drives, UPS systems<br />

and many other applications requiring high quality standards.<br />

The warranty granted on LEM <strong>transducers</strong> is for a period of 5 years (60 months) from the<br />

date of their delivery (not applicable to Energy-meter product family for traction<br />

and automotive <strong>transducers</strong> where the warranty period is 2 years).<br />

During this period LEM shall replace or repair all defective parts at its’ cost (provided the<br />

defect is due to defective material or workmanship).<br />

Additional claims as well as claims for the compensation of damages, which do not occur<br />

on the delivered material itself, are not covered by this warranty.<br />

All defects must be notified to LEM immediately and faulty material must be returned to the<br />

factory along with a description of the defect.<br />

Warranty repairs and or replacements are carried out at LEM’s discretion.<br />

The customer bears the transport costs. An extension of the warranty period following<br />

repairs undertaken under warranty cannot be granted.<br />

The warranty becomes invalid if the buyer has modified or repaired, or has had repaired by<br />

a third party the material without LEM’s written consent.<br />

The warranty does not cover any damage caused by incorrect conditions of useand cases<br />

of force majeure.<br />

No responsibility will apply except legal requirements regarding product liability.<br />

The warranty explicitly excludes all claims exceeding the above conditions.<br />

Geneva, 21 June 2011<br />

R 1<br />

Primary resistor (<strong>voltage</strong> transducer)<br />

SYMBOLS<br />

Industry Current and Voltage Transducers, Edition 2013, Published by LEM International SA<br />

© LEM International SA, Switzerland 2013, e-mail: sro@lem.com<br />

All Rights reserved<br />

The paper of this publication is produced with pulp bleached without chlorine, neutral sized and non-aging.<br />

As far as patents or other rights of third parties are concerned, liability is only assumed for components per se, not for applications, processes and circuits<br />

implemented with components or assemblies. For more details see the available data sheets.<br />

Terms of delivery and rights to change design or specifications are reserved.<br />

98<br />

François Gabella<br />

CEO LEM<br />

June 2011/Version 1<br />

99<br />

WARRANTY


LEM International Sales Representatives<br />

Asia • Pacific Africa • America<br />

Europe • Middle East<br />

Austria and CEE<br />

Eltrotex HandelsgesmbH<br />

Grundauerweg 7<br />

A-2500 Baden<br />

Tel. +43-2252-47040-0<br />

Fax +43-2252-47040-7<br />

e-mail: office@eltrotex.at<br />

LEM Deutschland GmbH,<br />

Office Austria<br />

Concorde Business Park 2/F/6<br />

A-2320 Schwechat<br />

Tel. +43 1 706 56 14-10<br />

Fax +43 1 706 56 14-30<br />

e-mail: tbu@lem.com<br />

Belarus and Baltic<br />

Republics<br />

DACPOL Sp. z o.o.<br />

ul. Pulawska 34<br />

PL-05-500 Piaseczno<br />

Tel. +48 22 7035100<br />

Fax +48 22 7035101<br />

e-mail: dacpol@dacpol.com.pl<br />

BeNeLux<br />

LEM Belgium sprl-bvba<br />

Egelantierlaan, 2<br />

B-1851 Humbeek<br />

Tel. : +32 22 70 30 84<br />

Fax : +32 22 70 30 85<br />

e-mail : lbe@lem.com<br />

Bosnia, Croatia,<br />

Serbia and Slovenia<br />

Proteus Electric S.r.l.<br />

Via di Noghere 94/1<br />

I-34147 Muggia-Aquilinia<br />

Tel. +39 040 23 21 88<br />

Fax +39 040 23 24 40<br />

e-mail: dino.fabiani@<br />

proteuselectric.it<br />

Bulgaria, Hungary<br />

Ineltron GmbH<br />

Hugenottenstr. 30<br />

D-61381 Friedrichsdorf<br />

Tel.: +36 70 3666055<br />

Tel.: +49 (0)6172 598809<br />

Fax.:+49 (0)617275933<br />

email: i.laszlo@ineltron.hu<br />

Argentina<br />

Semak S.A.<br />

Av. Belgrano 1580, 5° Piso<br />

AR-1093 BUENOS AIRES<br />

Tel. +54 11 4381 2108<br />

Fax +54 11 4383 7420<br />

e-mail: comex@semak.com.ar<br />

Brazil<br />

AMDS4 Imp. Exp. e Com. de<br />

Equip. Elétricos Ltda.<br />

Rua Dr. Ulhôa Cintra, 489,<br />

Piso Superior, Centro.<br />

13800-061-Moji Mirim-São Paulo<br />

Brazil.<br />

Tel. +55 19 3806-1950/8509<br />

Fax +55 19 3806-8422<br />

e-mail : jeduardo@amds4.com.br<br />

Australia and New Zealand<br />

Fastron Technologies Pty Ltd.<br />

25 Kingsley Close<br />

Rowville - Melbourne -<br />

Victoria 3178<br />

Tel. +61 3 9763 5155<br />

Fax +61 3 9763 5166<br />

e-mail: sales@fastron.com.au<br />

China<br />

LEM Electronics (China) Co., Ltd.<br />

No. 28, Linhe Str. Linhe<br />

Industrial Development Zone<br />

Shunyi District, Beijing, China<br />

Post code : 101300<br />

Tel. +86 10 89 45 52 88<br />

Fax +86 10 80 48 43 03<br />

+86 10 80 48 31 20<br />

e-mail: bjl@lem.com<br />

LEM Electronics (China) Co., Ltd.<br />

Hefei Office, R804.<br />

Qirong Building, No. 502 Wangjiang<br />

West Road, High-tech Zone<br />

Hefei, Anhui, 230022 P:R: China<br />

Tel. +86 551 530 9772<br />

Fax +86 551 530 9773<br />

e-mail: bjl@lem.com<br />

Czech Republic, Slovakia<br />

PE & ED, spol. s r.o.<br />

Koblovska 101/23<br />

CZ-71100 Ostrava<br />

Tel. +420 596 239 256<br />

Fax +420 596 239 531<br />

e-mail: peedova@peed.cz<br />

Denmark<br />

Motron A/S<br />

Torsoevej 3<br />

DK-8240 Risskov<br />

Tel. +47 6212 1050<br />

Fax +47 6212 1051<br />

e-mail: motron@motron.dk<br />

Finland<br />

ETRA Electronics Oy<br />

Lampputie 2<br />

FI-00740 Helsinki<br />

Tel. +358 207 65 160<br />

Fax +358 207 65 23 11<br />

e-mail: markku.soittila@etra.fi<br />

Field Applications Engineer<br />

Mr. Pasi Leveälahti<br />

Kausantie 668, 17150 Urajärvi<br />

Tel. +358 50 5754435<br />

Fax +358 37667 141<br />

e-mail: pli@lem.com<br />

France<br />

LEM France Sarl<br />

15, avenue Galois<br />

F. 92340 Bourg-La-Reine<br />

Tel. +33 1 45 36 46 20<br />

Fax +33 1 45 36 06 16<br />

e-mail: lfr@lem.com<br />

Germany<br />

LEM Deutschland GmbH<br />

Frankfurter Strasse 74<br />

D-64521 Gross-Gerau<br />

Tel. +49 6152 9301 0<br />

Fax +49 6152 8 46 61<br />

e-mail: info-lde@lem.com<br />

Canada Ontario East<br />

Optimum Components Inc.<br />

7750 Birchmount Road Unit 5<br />

CAN-Markham ON L3R 0B4<br />

Tel. +1 905 477 9393<br />

Fax +1 905 477 6197<br />

e-mail: mikep@optimumcomponents.<br />

com<br />

Canada Manitoba West<br />

William P. Hall Contract Services<br />

7045 NE 137th st.<br />

CAN-Kirkland,<br />

Washington 98034<br />

Tel. +1 425 820 6216<br />

Fax +1 206 390 2411<br />

LEM Electronics (China) Co., Ltd.<br />

Shanghai Office, R510,<br />

Hualian Development Mansion,<br />

No. 728 Xinhua Road<br />

Changning District<br />

Shanghai, 200052, P.R. China<br />

Tel. +86 21 3226 0881<br />

Fax +86 21 5258 2262<br />

e-mail: bjl@lem.com<br />

LEM Electronics (China) Co., Ltd.<br />

Shenzhen Office<br />

R1205, Liantai Mansion, Zhuzilin,<br />

Shennan Avenue, Futian District,<br />

Shenzhen 518040 P.R. China<br />

Tel. +86 755 3334 0779<br />

+86 755 3336 9609<br />

Fax +86 755 3334 0780<br />

e-mail: bjl@lem.com<br />

LEM Electronics (China) Co., Ltd.<br />

Xi‘an Office<br />

R703, Tower B<br />

Jinqiao International Plaza<br />

No. 50, Technology Road<br />

High-Tech District, Xi’an,<br />

Shanxi, 710075 P.R. China<br />

Tel. +86 29 8833 7168<br />

Fax +86 29 8833 7158<br />

e-mail: bjl@lem.com<br />

Hauber & Graf electronics GmbH<br />

Bavaria / Baden Württemberg<br />

Höpfigheimer Str. 8<br />

D-71711 Steinheim<br />

Tel. +49 7144 33905-0<br />

Fax +49 7144 33905-55<br />

e-mail: info@hg-electronics.de<br />

Israel<br />

Ofer Levin Technological<br />

Application<br />

PO Box 18247<br />

IL- Tel Aviv 611 81<br />

Tel.+972 3 5586279<br />

Fax +972 3 5586282<br />

e-mail: ol_teap@netvision.net.il<br />

ofer.levin@tec-apps.co.il<br />

Italy<br />

LEM Regional Office Italy<br />

via V. Bellini, 7<br />

I-35030 Selvazzano Dentro, PD<br />

Tel. +39 049 805 60 60<br />

Fax +39 049 805 60 59<br />

e-mail: lit@lem.com<br />

Norway<br />

Motron A/S<br />

Torsoevej 3<br />

DK-8240 Risskov<br />

Tel. +47 6212 1050<br />

Fax +47 6212 1051<br />

e-mail: motron@motron.dk<br />

Poland<br />

DACPOL Sp. z o.o.<br />

ul. Pulawska 34<br />

PL-05-500 Piaseczno<br />

Tel. +48 22 7035100<br />

Fax +48 22 7035101<br />

e-mail: dacpol@dacpol.com.pl<br />

South Africa<br />

Denver Technical Products Ltd.<br />

P.O. Box 75810<br />

SA-2047 Garden View<br />

Tel. +27 11 626 20 23<br />

Fax +27 11 626 20 09<br />

e-mail: denvertech@pixie.co.za<br />

USA, Canada, Mexico<br />

LEM USA, Inc., Central Office<br />

11665 West Bradley Road<br />

Milwaukee, WI 53224, USA<br />

Toll free: 800 236 5366<br />

Tel. +1 414 353 0711<br />

Fax +1 414 353 0733<br />

e-mail: lus@lem.com<br />

India<br />

LEM Management Services Sarl-<br />

India Branch Office<br />

Mr. Sudhir Khandekar<br />

Level 2, Connaught Place,<br />

Bund Garden Road, Pune-411001<br />

Tel. +91 20 4014 7575<br />

Mobile +91 98 3313 5223<br />

e-mail: skh@lem.com<br />

GLOBETEK<br />

No.122, 27th Cross,<br />

7th Block, Jayanagar,<br />

Bangalore-560070 INDIA<br />

Tel: +91 80 2663 5776<br />

+91 80 2664 3375<br />

Fax: +91 80 2653 4020<br />

e-mail: sales@globetek.in<br />

Japan<br />

LEM Japan K.K.<br />

2-1-2 Nakamachi<br />

J-194-0021Machida-Tokyo<br />

Tel. +81 4 2725 8151<br />

Fax +81 4 2728 8119<br />

e-mail: ljp@lem.com<br />

LEM Japan K.K.<br />

Nagoya Sales Office<br />

1-14-24-701 Marunouchi,<br />

Naka-ku, Nagoya<br />

Portugal<br />

QEnergia, Lda<br />

Centro Empresarial S. Sebastião<br />

Rua de S. Sebastião Lt 11 n.º 10,<br />

Albarraque<br />

2635-448 Rio de Mouro<br />

Portugal<br />

Tel. +351 214 309 320<br />

Fax +351 214 309 299<br />

e-mail: qenergia@qenergia.pt<br />

Romania<br />

SYSCOM -18 Srl.<br />

Calea Plevnei 139B Sector 6<br />

RO-060011 Bucharest<br />

Tel. +40 21 310 26 78<br />

Fax +40 21 316 91 76<br />

e-mail:<br />

george.barbalata@syscom18.com<br />

Russia<br />

TVELEM. LLC, Central Office<br />

Str. Staritskoye shosse,15<br />

170040 Tver / Russia<br />

Tel./fax: + 7 4822 655672, 73<br />

E-mail: tvelem@lem.com<br />

Scandinavia<br />

LEM Regional<br />

Office Nordic Countries<br />

Regus Tuborg Havn<br />

Tuborg Boulevard 12, 3rd<br />

2900 Hellerup, Denmark<br />

Tel. +45 60 43 1953<br />

e-mail: kck@lem.com<br />

Spain<br />

LEM France Sarl<br />

15, avenue Galois<br />

F-92340 Bourg-la-Reine<br />

Tel. +34 93 886 02 28<br />

Fax +34 93 886 60 87<br />

e-mail: slu@lem.com<br />

Sweden<br />

ADIATOR AB<br />

Hälsingegatan 40<br />

SE-11343 Stockholm<br />

Tel. +46 8 729 1700<br />

Fax +46 8 729 1717<br />

e-mail: info@adiator.se<br />

LEM USA East, Greg Parker<br />

Toll free: 800 236 5366 ext. 202<br />

Tel. +1 414 577 4132<br />

e-mail: gap@lem.com<br />

LEM USA Central, Alan Garcia<br />

Toll free: 800 236 5366 ext. 200<br />

Tel. +1 414 577 4130<br />

e-mail: afg@lem.com<br />

460-0002 Japan<br />

Tel. +81 52 203 8065<br />

Fax +81 52 203 8091<br />

e-mail: ljp@lem.com<br />

Korea<br />

S&H TRADING<br />

Rm.302 Eopmu A-dong,<br />

Chungang Yutong, 1258,<br />

Gurobon-dong, Guro-gu,<br />

Seoul, 152-721, Korea<br />

Tel. +82 2 2686 83 46<br />

+82 2 2613 83 45<br />

Fax +82 2 2686 83 47<br />

e-mail: snh@hinodekorea.co.kr<br />

Young Woo Ind. Co.<br />

#608 Penterium IT Tower,<br />

282 Hakeui-ro, Dongan-gu,<br />

Anyang-si, Gyeonggi-do<br />

South Korea, 431-810<br />

Tel. +82 31 266 88 56<br />

Fax +82 31 266 88 57<br />

e-mail: info@ygwoo.co.kr<br />

Malaysia<br />

ACEI Systems Sdn. Bhd.<br />

1A & 1A-1, Lintasan<br />

Perajurit 6,<br />

Taman Perak<br />

31400 Ipoh<br />

Perak Darul Ridzuan, Malaysia<br />

Switzerland<br />

SIMPEX Electronic AG<br />

Binzackerstrasse 33<br />

CH-8622 Wetzikon<br />

Tel. +41 44 931 10 30<br />

Fax +41 44 931 10 31<br />

e-mail: contact@simpex.ch<br />

LEM International SA<br />

8, Chemin des Aulx, P.O. Box 35,<br />

CH-1228 Plan-les-Ouates<br />

Tel. +41 22 706 11 11<br />

Fax +41 22 794 94 78<br />

e-mail: lsa@lem.com<br />

Turkey<br />

Özdisan Electronik Pazarlama<br />

DES Sanayi Sitesi,<br />

104.Sok.A07 Blok N°:02<br />

TR-34776 Y.Dudullu<br />

Umraniye / Istanbul<br />

Tel. +90 216 420 1882<br />

Fax +90 216 466 3686<br />

e-mail: Ozdisan@ozdisan.com<br />

Ukraine<br />

“SP DACPOL” Co Ltd.<br />

Snovskaya str., 20<br />

UA-02090, KIEV, UKRAINE<br />

Tel. +380 44 501 93 44<br />

Fax +380 44 502 64 87<br />

e-mail: kiev@dacpol.com<br />

United Kingdom and Eire<br />

LEM Regional Office UK<br />

A Branch of LEM Deutschland<br />

GmbH<br />

West Lancs Investment Centre<br />

Suite 10, Maple view<br />

Whitemoss Business Park<br />

Skelmersdale, Lancs WN8 9TG<br />

Tel. +44 (0)1942 388 440<br />

Fax +44 (0)1942 388 441<br />

e-mail: luk@lem.com<br />

LEM USA Midwest, John Marino<br />

Toll free: 800 236 5366 ext. 138<br />

Tel. +1 414 577 4137<br />

e-mail: jam@lem.com<br />

LEM USA West, Don Blankenburg<br />

Toll free: 800 236 5366 ext. 206<br />

Tel. +1 414 577 4122<br />

e-mail: dbl@lem.com<br />

Tel. +60 5 547 0761/0771<br />

Fax +60 5 547 1518<br />

e-mail: enquiry@aceisys.com.my<br />

Singapore<br />

Overseas Technology Center Pte Ltd<br />

Blk 1003, Unit 04-16<br />

Bukit Merah Central<br />

Inno Center<br />

RS-159836 Singapore<br />

Tel. +65 272 6077<br />

Fax. + 65 278 2134<br />

e-mail: info@overseastechnology.com.sg<br />

Taiwan<br />

POWERTRONICS CO. LTD<br />

The Tapei SUN-TECH Technology Park<br />

10th Floor, No. 205-2, Section 3,<br />

Beixin Road, Xindian City, Taipei<br />

County<br />

23143, Taiwan, R. O. C.<br />

Tel. +886 2 7741 7000<br />

Fax +886 2 7741 7001<br />

e-mail: sales@powertronics.com.tw<br />

Tope Co., Ltd.<br />

3F-4, 716 Chung Cheng Road<br />

Chung Ho City, Taipei Hsien,<br />

Taiwan 235, R.O.C<br />

Tel. +886 2 8228 0658<br />

Fax +886 2 8228 0659<br />

e-mail: tope@ms1.hinet.net<br />

Distributor<br />

LEM International SA<br />

8, Chemin des Aulx, P.O. Box 35<br />

CH-1228 Plan-les-Ouates<br />

Tel. +41 22 706 11 11, Fax +41 22 794 94 78<br />

e-mail: Isa@lem.com; www.lem.com<br />

Keep in touch<br />

www.lem.com<br />

Publication CAE130621/1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!